Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

TANK is a negative regulator of Toll-like receptor signaling and is critical for the prevention of autoimmune nephritis

Abstract

The intensity and duration of immune responses are controlled by many proteins that modulate Toll-like receptor (TLR) signaling. TANK has been linked to positive regulation of the transcription factors IRF3 and NF-κB. Here we demonstrate that TANK is not involved in interferon responses and is a negative regulator of proinflammatory cytokine production induced by TLR signaling. TLR-induced polyubiquitination of the ubiquitin ligase TRAF6 was upregulated in Tank−/− macrophages. Notably, Tank−/− mice spontaneously developed fatal glomerulonephritis owing to deposition of immune complexes. Autoantibody production in Tank−/− mice was abrogated by antibiotic treatment or the absence of interleukin 6 (IL-6) or the adaptor MyD88. Our results demonstrate that constitutive TLR signaling by intestinal commensal microflora is suppressed by TANK.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Enhanced production of immunoglobulins and autoantibodies due to B cell abnormalities in Tank−/− mice.
Figure 2: Development of lethal glomerulonephritis in Tank−/− mice.
Figure 3: Enhanced proinflammatory cytokine production in response to TLR stimulation in Tank−/− mice.
Figure 4: TANK negatively regulates the activation of NF-κB and AP-1 as well as gene expression in response to TLR7 stimulation in macrophages.
Figure 5: TANK controls TRAF6 ubiquitination in response to TLR7 stimulation in macrophages.
Figure 6: Enhanced activation of B cells in Tank−/− mice.
Figure 7: Antibiotic treatment, as well as deficiency of MyD88 or IL-6, ameliorates autoantibody production in Tank−/− mice.

Similar content being viewed by others

References

  1. Akira, S., Uematsu, S. & Takeuchi, O. Pathogen recognition and innate immunity. Cell 124, 783–801 (2006).

    Article  CAS  Google Scholar 

  2. Beutler, B. Inferences, questions and possibilities in Toll-like receptor signalling. Nature 430, 257–263 (2004).

    Article  CAS  Google Scholar 

  3. Medzhitov, R. Recognition of microorganisms and activation of the immune response. Nature 449, 819–826 (2007).

    Article  CAS  Google Scholar 

  4. Kawai, T., Adachi, O., Ogawa, T., Takeda, K. & Akira, S. Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity 11, 115–122 (1999).

    Article  CAS  Google Scholar 

  5. Yamamoto, M. et al. Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science 301, 640–643 (2003).

    Article  CAS  Google Scholar 

  6. O'Neill, L.A. & Bowie, A.G. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat. Rev. Immunol. 7, 353–364 (2007).

    Article  CAS  Google Scholar 

  7. Kawagoe, T. et al. Sequential control of Toll-like receptor-dependent responses by IRAK1 and IRAK2. Nat. Immunol. 9, 684–691 (2008).

    Article  CAS  Google Scholar 

  8. Wang, C. et al. TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 412, 346–351 (2001).

    Article  CAS  Google Scholar 

  9. Honda, K., Takaoka, A. & Taniguchi, T. Type I interferon gene induction by the interferon regulatory factor family of transcription factors. Immunity 25, 349–360 (2006).

    Article  CAS  Google Scholar 

  10. Marshak-Rothstein, A. Toll-like receptors in systemic autoimmune disease. Nat. Rev. Immunol. 6, 823–835 (2006).

    Article  CAS  Google Scholar 

  11. Christensen, S.R. & Shlomchik, M.J. Regulation of lupus-related autoantibody production and clinical disease by Toll-like receptors. Semin. Immunol. 19, 11–23 (2007).

    Article  CAS  Google Scholar 

  12. Lau, C.M. et al. RNA-associated autoantigens activate B cells by combined B cell antigen receptor/Toll-like receptor 7 engagement. J. Exp. Med. 202, 1171–1177 (2005).

    Article  CAS  Google Scholar 

  13. Pisitkun, P. et al. Autoreactive B cell responses to RNA-related antigens due to TLR7 gene duplication. Science 312, 1669–1672 (2006).

    Article  CAS  Google Scholar 

  14. Viglianti, G.A. et al. Activation of autoreactive B cells by CpG dsDNA. Immunity 19, 837–847 (2003).

    Article  CAS  Google Scholar 

  15. Liew, F.Y., Xu, D., Brint, E.K. & O'Neill, L.A. Negative regulation of toll-like receptor-mediated immune responses. Nat. Rev. Immunol. 5, 446–458 (2005).

    Article  CAS  Google Scholar 

  16. Kobayashi, K. et al. IRAK-M is a negative regulator of Toll-like receptor signaling. Cell 110, 191–202 (2002).

    Article  CAS  Google Scholar 

  17. Brint, E.K. et al. ST2 is an inhibitor of interleukin 1 receptor and Toll-like receptor 4 signaling and maintains endotoxin tolerance. Nat. Immunol. 5, 373–379 (2004).

    Article  CAS  Google Scholar 

  18. Wald, D. et al. SIGIRR, a negative regulator of Toll-like receptor-interleukin 1 receptor signaling. Nat. Immunol. 4, 920–927 (2003).

    Article  CAS  Google Scholar 

  19. Nakagawa, R. et al. SOCS1 participates in negative regulation of LPS responses. Immunity 17, 677–687 (2002).

    Article  CAS  Google Scholar 

  20. Reiley, W.W. et al. Regulation of T cell development by the deubiquitinating enzyme CYLD. Nat. Immunol. 7, 411–417 (2006).

    Article  CAS  Google Scholar 

  21. Lee, E.G. et al. Failure to regulate TNF-induced NF-κB and cell death responses in A20-deficient mice. Science 289, 2350–2354 (2000).

    Article  CAS  Google Scholar 

  22. Kuhn, R., Lohler, J., Rennick, D., Rajewsky, K. & Muller, W. Interleukin-10-deficient mice develop chronic enterocolitis. Cell 75, 263–274 (1993).

    Article  CAS  Google Scholar 

  23. Kobayashi, M. et al. Toll-like receptor-dependent production of IL-12p40 causes chronic enterocolitis in myeloid cell-specific Stat3-deficient mice. J. Clin. Invest. 111, 1297–1308 (2003).

    Article  CAS  Google Scholar 

  24. Rakoff-Nahoum, S., Hao, L. & Medzhitov, R. Role of toll-like receptors in spontaneous commensal-dependent colitis. Immunity 25, 319–329 (2006).

    Article  CAS  Google Scholar 

  25. Cheng, G. & Baltimore, D. TANK, a co-inducer with TRAF2 of TNF- and CD 40L-mediated NF-κB activation. Genes Dev. 10, 963–973 (1996).

    Article  CAS  Google Scholar 

  26. Rothe, M. et al. I-TRAF is a novel TRAF-interacting protein that regulates TRAF-mediated signal transduction. Proc. Natl. Acad. Sci. USA 93, 8241–8246 (1996).

    Article  CAS  Google Scholar 

  27. Chin, A.I. et al. TANK potentiates tumor necrosis factor receptor-associated factor-mediated c-Jun N-terminal kinase/stress-activated protein kinase activation through the germinal center kinase pathway. Mol. Cell. Biol. 19, 6665–6672 (1999).

    Article  CAS  Google Scholar 

  28. Li, C. et al. Downstream regulator TANK binds to the CD40 recognition site on TRAF3. Structure 10, 403–411 (2002).

    Article  CAS  Google Scholar 

  29. Pomerantz, J.L. & Baltimore, D. NF-κB activation by a signaling complex containing TRAF2, TANK and TBK1, a novel IKK-related kinase. EMBO J. 18, 6694–6704 (1999).

    Article  CAS  Google Scholar 

  30. Nomura, F., Kawai, T., Nakanishi, K. & Akira, S. NF-κB activation through IKK-i-dependent I-TRAF/TANK phosphorylation. Genes Cells 5, 191–202 (2000).

    Article  CAS  Google Scholar 

  31. Fitzgerald, K.A. et al. IKKε and TBK1 are essential components of the IRF3 signaling pathway. Nat. Immunol. 4, 491–496 (2003).

    Article  CAS  Google Scholar 

  32. Sharma, S. et al. Triggering the interferon antiviral response through an IKK-related pathway. Science 300, 1148–1151 (2003).

    Article  CAS  Google Scholar 

  33. Hemmi, H. et al. The roles of two IκB kinase-related kinases in lipopolysaccharide and double stranded RNA signaling and viral infection. J. Exp. Med. 199, 1641–1650 (2004).

    Article  CAS  Google Scholar 

  34. Kato, H. et al. Cell type-specific involvement of RIG-I in antiviral response. Immunity 23, 19–28 (2005).

    Article  CAS  Google Scholar 

  35. Hacker, H. et al. Specificity in Toll-like receptor signalling through distinct effector functions of TRAF3 and TRAF6. Nature 439, 204–207 (2006).

    Article  Google Scholar 

  36. Oganesyan, G. et al. Critical role of TRAF3 in the Toll-like receptor-dependent and -independent antiviral response. Nature 439, 208–211 (2006).

    Article  CAS  Google Scholar 

  37. Guo, B. & Cheng, G. Modulation of the interferon antiviral response by the TBK1/IKKi adaptor protein TANK. J. Biol. Chem. 282, 11817–11826 (2007).

    Article  CAS  Google Scholar 

  38. Sasai, M. et al. Cutting edge: NF-κB-activating kinase-associated protein 1 participates in TLR3/Toll-IL-1 homology domain-containing adapter molecule-1-mediated IFN regulatory factor 3 activation. J. Immunol. 174, 27–30 (2005).

    Article  CAS  Google Scholar 

  39. Ryzhakov, G. & Randow, F. SINTBAD, a novel component of innate antiviral immunity, shares a TBK1-binding domain with NAP1 and TANK. EMBO J. 26, 3180–3190 (2007).

    Article  CAS  Google Scholar 

  40. Wertz, I.E. et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling. Nature 430, 694–699 (2004).

    Article  CAS  Google Scholar 

  41. Brummelkamp, T.R., Nijman, S.M., Dirac, A.M. & Bernards, R. Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-κB. Nature 424, 797–801 (2003).

    Article  CAS  Google Scholar 

  42. Trompouki, E. et al. CYLD is a deubiquitinating enzyme that negatively regulates NF-κB activation by TNFR family members. Nature 424, 793–796 (2003).

    Article  CAS  Google Scholar 

  43. Sun, L., Deng, L., Ea, C.K., Xia, Z.P. & Chen, Z.J. The TRAF6 ubiquitin ligase and TAK1 kinase mediate IKK activation by BCL10 and MALT1 in T lymphocytes. Mol. Cell 14, 289–301 (2004).

    Article  CAS  Google Scholar 

  44. He, J.Q. et al. Rescue of TRAF3-null mice by p100 NF-κB deficiency. J. Exp. Med. 203, 2413–2418 (2006).

    Article  CAS  Google Scholar 

  45. Suematsu, S. et al. IgG1 plasmacytosis in interleukin 6 transgenic mice. Proc. Natl. Acad. Sci. USA 86, 7547–7551 (1989).

    Article  CAS  Google Scholar 

  46. Boone, D.L. et al. The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses. Nat. Immunol. 5, 1052–1060 (2004).

    Article  CAS  Google Scholar 

  47. Turer, E.E. et al. Homeostatic MyD88-dependent signals cause lethal inflamMation in the absence of A20. J. Exp. Med. 205, 451–464 (2008).

    Article  CAS  Google Scholar 

  48. Xavier, R.J. & Podolsky, D.K. Unravelling the pathogenesis of inflammatory bowel disease. Nature 448, 427–434 (2007).

    Article  CAS  Google Scholar 

  49. Elson, C.O. et al. Experimental models of inflammatory bowel disease reveal innate, adaptive, and regulatory mechanisms of host dialogue with the microbiota. Immunol. Rev. 206, 260–276 (2005).

    Article  Google Scholar 

  50. Sato, S. et al. Essential function for the kinase TAK1 in innate and adaptive immune responses. Nat. Immunol. 6, 1087–1095 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Yasui (Osaka University) for Il6−/− mice and plasmids; colleagues in our laboratories; E. Kamada for secretarial assistance; Y. Fujiwara, M. Kumagai and R. Abe for technical assistance; and S. Sato for discussions. Supported by the Special Coordination Funds of the Japanese Ministry of Education, Culture, Sports, Science and Technology, and grants from the Ministry of Health, Labour and Welfare in Japan, the Global Center of Excellence Program of Japan, and the US National Institutes of Health (P01 AI070167).

Author information

Authors and Affiliations

Authors

Contributions

T.K., O.T. and S.A. designed the research and analyzed data; T.K. generated Tank−/− mice and did most of the experiments; Y.T., Y.I. and T.T. did histological examination of kidneys; H.K. provided advice; and T.K., O.T. and S.A. prepared the manuscript.

Corresponding author

Correspondence to Shizuo Akira.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 (PDF 523 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawagoe, T., Takeuchi, O., Takabatake, Y. et al. TANK is a negative regulator of Toll-like receptor signaling and is critical for the prevention of autoimmune nephritis. Nat Immunol 10, 965–972 (2009). https://doi.org/10.1038/ni.1771

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1771

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing