Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Development of immunoglobulin λ-chain–positive B cells, but not editing of immunoglobulin κ-chain, depends on NF-κB signals

Abstract

By genetically ablating IκB kinase (IKK)-mediated activation of the transcription factor NF-κB in the B cell lineage and by analyzing a mouse mutant in which immunoglobulin λ-chain–positive B cells are generated in the absence of rearrangements in the locus encoding immunoglobulin κ-chain, we define here two distinct, consecutive phases of early B cell development that differ in their dependence on IKK-mediated NF-κB signaling. During the first phase, in which NF-κB signaling is dispensable, predominantly κ-chain-positive B cells are generated, which undergo efficient receptor editing. In the second phase, predominantly λ-chain-positive B cells are generated whose development is ontogenetically timed to occur after rearrangements of the locus encoding κ-chain. This second phase of development is dependent on NF-κB signals, which can be substituted by transgenic expression of the prosurvival factor Bcl-2.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: B cell development in the absence of NF-κB signaling.
Figure 2: B cell numbers during B cell development in the presence and absence of NF-κB signaling.
Figure 3: Generation of λ-chain-positive B cells in the presence and absence of IKK-mediated NF-κB activation.
Figure 4: Effect of the presence or absence of IKK-mediated activation of NF-κB on receptor editing at the Igk locus.
Figure 5: Effect of overexpression of Bcl-2 in the B cell lineage on the generation of λ-chain-positive B cells in the presence and absence of IKK-mediated NF-κB activation.
Figure 6: Generation of immature NEMO-deficient λ-chain-positive B cells in the presence and absence of rearrangements at Igk loci.

Similar content being viewed by others

References

  1. Siebenlist, U., Brown, K. & Claudio, E. Control of lymphocyte development by nuclear factor-κB. Nat. Rev. Immunol. 5, 435–445 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Gerondakis, S. et al. Unravelling the complexities of the NF-κB signalling pathway using mouse knockout and transgenic models. Oncogene 25, 6781–6799 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Mackay, F., Silveira, P.A. & Brink, R. B cells and the BAFF/APRIL axis: fast-forward on autoimmunity and signaling. Curr. Opin. Immunol. 19, 327–336 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Pasparakis, M., Schmidt-Supprian, M. & Rajewsky, K. IκB kinase signaling is essential for maintenance of mature B cells. J. Exp. Med. 196, 743–752 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sasaki, Y. et al. Canonical NF-κB activity, dispensable for B cell development, replaces BAFF-receptor signals and promotes B cell proliferation upon activation. Immunity 24, 729–739 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Luedde, T. et al. IKK1 and IKK2 cooperate to maintain bile duct integrity in the liver. Proc. Natl. Acad. Sci. USA 105, 9733–9738 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Feng, B., Cheng, S., Pear, W.S. & Liou, H.C. NF-κB inhibitor blocks B cell development at two checkpoints. Med. Immunol. 3, 1 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Jimi, E. et al. Activation of NF-κB promotes the transition of large, CD43+ pre-B cells to small, CD43 pre-B cells. Int. Immunol. 17, 815–825 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Verkoczy, L. et al. A role for nuclear factor κB/rel transcription factors in the regulation of the recombinase activator genes. Immunity 22, 519–531 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nemazee, D. Receptor editing in lymphocyte development and central tolerance. Nat. Rev. Immunol. 6, 728–740 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Bredemeyer, A.L. et al. DNA double-strand breaks activate a multi-functional genetic program in developing lymphocytes. Nature 456, 819–823 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hobeika, E. et al. Testing gene function early in the B cell lineage in mb1-cre mice. Proc. Natl. Acad. Sci. USA 103, 13789–13794 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ait-Azzouzene, D. et al. An immunoglobulin C κ-reactive single chain antibody fusion protein induces tolerance through receptor editing in a normal polyclonal immune system. J. Exp. Med. 201, 817–828 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Takeda, S. et al. Deletion of the immunoglobulin κ chain intron enhancer abolishes κ chain gene rearrangement in cis but not λ chain gene rearrangement in trans. EMBO J. 12, 2329–2336 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Strasser, A. et al. Enforced BCL2 expression in B-lymphoid cells prolongs antibody responses and elicits autoimmune disease. Proc. Natl. Acad. Sci. USA 88, 8661–8665 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Schmidt-Supprian, M. & Rajewsky, K. Vagaries of conditional gene targeting. Nat. Immunol. 8, 665–668 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Allman, D. et al. Resolution of three nonproliferative immature splenic B cell subsets reveals multiple selection points during peripheral B cell maturation. J. Immunol. 167, 6834–6840 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Debnath, I., Roundy, K.M., Weis, J.J. & Weis, J.H. Defining in vivo transcription factor complexes of the murine CD21 and CD23 genes. J. Immunol. 178, 7139–7150 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Lindsley, R.C., Thomas, M., Srivastava, B. & Allman, D. Generation of peripheral B cells occurs via two spatially and temporally distinct pathways. Blood 109, 2521–2528 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Radic, M.Z., Erikson, J., Litwin, S. & Weigert, M. B lymphocytes may escape tolerance by revising their antigen receptors. J. Exp. Med. 177, 1165–1173 (1993).

    Article  CAS  PubMed  Google Scholar 

  21. Constantinescu, A. & Schlissel, M.S. Changes in locus-specific V(D)J recombinase activity induced by immunoglobulin gene products during B cell development. J. Exp. Med. 185, 609–620 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Arakawa, H., Shimizu, T. & Takeda, S. Re-evaluation of the probabilities for productive arrangements on the κ and λ loci. Int. Immunol. 8, 91–99 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Lang, J. et al. Enforced Bcl-2 expression inhibits antigen-mediated clonal elimination of peripheral B cells in an antigen dose-dependent manner and promotes receptor editing in autoreactive, immature B cells. J. Exp. Med. 186, 1513–1522 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Motoyama, N. et al. Massive cell death of immature hematopoietic cells and neurons in Bcl-x-deficient mice. Science 267, 1506–1510 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. White, E. The pims and outs of survival signaling: role for the Pim-2 protein kinase in the suppression of apoptosis by cytokines. Genes Dev. 17, 1813–1816 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Enzler, T. et al. Alternative and classical NF-κ B signaling retain autoreactive B cells in the splenic marginal zone and result in lupus-like disease. Immunity 25, 403–415 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Grandien, A., Bras, A. & Martinez, C. Acquisition of CD40 expression during murine B-cell differentiation. Scand. J. Immunol. 43, 47–55 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Applequist, S.E., Wallin, R.P. & Ljunggren, H.G. Variable expression of Toll-like receptor in murine innate and adaptive immune cell lines. Int. Immunol. 14, 1065–1074 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Kawai, T. & Akira, S. Signaling to NF-κB by Toll-like receptors. Trends Mol. Med. 13, 460–469 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Inoue, J., Gohda, J. & Akiyama, T. Characteristics and biological functions of TRAF6. Adv. Exp. Med. Biol. 597, 72–79 (2007).

    Article  PubMed  Google Scholar 

  31. Mackay, F. & Schneider, P. TACI, an enigmatic BAFF/APRIL receptor, with new unappreciated biochemical and biological properties. Cytokine Growth Factor Rev. 19, 263–276 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Stadanlick, J.E. et al. Tonic B cell antigen receptor signals supply an NF-κB substrate for prosurvival BLyS signaling. Nat. Immunol. 9, 1379–1387 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kistler, B. et al. Induction of nuclear factor-κB during primary B cell differentiation. J. Immunol. 160, 2308–2317 (1998).

    CAS  PubMed  Google Scholar 

  34. Amin, R.H. & Schlissel, M.S. Foxo1 directly regulates the transcription of recombination-activating genes during B cell development. Nat. Immunol. 9, 613–622 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Inlay, M.A., Tian, H., Lin, T. & Xu, Y. Important roles for E protein binding sites within the immunoglobulin κ chain intronic enhancer in activating Vκ Jκ rearrangement. J. Exp. Med. 200, 1205–1211 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Scherer, D.C. et al. Corepression of RelA and c-rel inhibits immunoglobulin κ gene transcription and rearrangement in precursor B lymphocytes. Immunity 5, 563–574 (1996).

    Article  CAS  PubMed  Google Scholar 

  37. Vela, J.L. et al. Rearrangement of mouse immunoglobulin κ deleting element recombining sequence promotes immune tolerance and λ B cell production. Immunity 28, 161–170 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Engel, H., Rolink, A. & Weiss, S. B cells are programmed to activate κ and λ for rearrangement at consecutive developmental stages. Eur. J. Immunol. 29, 2167–2176 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Bendall, H.H., Sikes, M.L. & Oltz, E.M. Transcription factor NF-κ B regulates Ig λ light chain gene rearrangement. J. Immunol. 167, 264–269 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Kawai, T. et al. Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity 11, 115–122 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Schmidt-Supprian, M. et al. NEMO/IKK gamma-deficient mice model incontinentia pigmenti. Mol. Cell 5, 981–992 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Ruland, J. et al. Bcl10 is a positive regulator of antigen receptor-induced activation of NF-κB and neural tube closure. Cell 104, 33–42 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. von Bulow, G.U., van Deursen, J.M. & Bram, R.J. Regulation of the T-independent humoral response by TACI. Immunity 14, 573–582 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Pasparakis, M. et al. TNF-mediated inflammatory skin disease in mice with epidermis-specific deletion of IKK2. Nature 417, 861–866 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Fox, C.J., Hammerman, P.S. & Thompson, C.B. The Pim kinases control rapamycin-resistant T cell survival and activation. J. Exp. Med. 201, 259–266 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gareus, R. et al. Normal epidermal differentiation but impaired skin-barrier formation upon keratinocyte-restricted IKK1 ablation. Nat. Cell Biol. 9, 461–469 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Imai, Y. et al. Identification of oxidative stress and Toll-like receptor 4 signaling as a key pathway of acute lung injury. Cell 133, 235–249 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zha, S. et al. Complementary functions of ATM and H2AX in development and suppression of genomic instability. Proc. Natl. Acad. Sci. USA 105, 9302–9306 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kawabe, T. et al. The immune responses in CD40-deficient mice: impaired immunoglobulin class switching and germinal center formation. Immunity 1, 167–178 (1994).

    Article  CAS  PubMed  Google Scholar 

  50. Seagal, J., Edry, E., Naftali, H. & Melamed, D. Generation and selection of an IgG-driven autoimmune repertoire during B-lymphopoiesis in Igmicro-deficient/lpr mice. Int. Immunol. 16, 905–913 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We regret that for space reasons we often had to quote reviews instead of the original papers. We thank S. Akira (Osaka University), F. Alt (Children's Hospital, Boston), R. Bram (Mayo Medical School, Rochester), R. Geha (Children's Hospital, Boston), T. Mak (Campbell Family Institute for Cancer Research), D. Nemazee (The Scripps Research Institute) and M. Reth (University of Freiburg) for Myd88−/−, Atm−/−, Taci−/−, Bcl10−/−, κ-macroself and mb1-cre cells and mouse strains; S. Weiss (Helmholtz Centre for Infection Research) for anti-λ1-chain; N. Rice (US National Cancer Institute) for anti-p52; T. Chakraborty, G. Galler and S. Koralov for help with quantitative real-time PCR, EMSA and cell-cycle analysis; M. Bamberg for antibody preparation; N. Barteneva for cell sorting; and D. Ghitza, A. Pellerin, J. Grundy and J. Xia for technical assistance with mouse work. Supported by the US National Institutes of Health (M.S.S. and K.R.) and Deutsche Forschungsgemeinschaft (Emmy Noether grant to M.S.-S.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Emmanuel Derudder, Marc Schmidt-Supprian or Klaus Rajewsky.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10 and Supplementary Methods (PDF 3701 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Derudder, E., Cadera, E., Vahl, J. et al. Development of immunoglobulin λ-chain–positive B cells, but not editing of immunoglobulin κ-chain, depends on NF-κB signals. Nat Immunol 10, 647–654 (2009). https://doi.org/10.1038/ni.1732

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1732

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing