Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Structural basis of receptor sharing by interleukin 17 cytokines

Abstract

Interleukin 17 (IL-17)-producing helper T cells (TH-17 cells), together with their effector cytokines, including members of the IL-17 family, are emerging as key mediators of chronic inflammatory and autoimmune disorders. Here we present the crystal structure of a complex of IL-17 receptor A (IL-17RA) bound to IL-17F in a 1:2 stoichiometry. The mechanism of complex formation was unique for cytokines and involved the engagement of IL-17 by two fibronectin-type domains of IL-17RA in a groove between the IL-17 homodimer interface. Binding of the first receptor to the IL-17 cytokines modulated the affinity and specificity of the second receptor-binding event, thereby promoting heterodimeric versus homodimeric complex formation. IL-17RA used a common recognition strategy to bind to several members of the IL-17 family, which allows it to potentially act as a shared receptor in multiple different signaling complexes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the IL-17RA–IL-17F complex.
Figure 2: Binding of IL-17F to IL-17RA is mediated by three distinct interfaces.
Figure 3: Assembly and model of the heterodimeric IL-17 signaling complex.
Figure 4: Binding interface and conserved IL-17 residues.
Figure 5: IL-17RA–IL-17F and homodimeric complexes of cysteine-knot growth factor receptors.

Accession codes

Accessions

Protein Data Bank

References

  1. Mosmann, T.R. & Coffman, R.L. TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu. Rev. Immunol. 7, 145–173 (1989).

    Article  CAS  Google Scholar 

  2. Harrington, L.E. et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat. Immunol. 6, 1123–1132 (2005).

    Article  CAS  Google Scholar 

  3. Park, H. et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat. Immunol. 6, 1133–1141 (2005).

    Article  CAS  Google Scholar 

  4. Korn, T., Bettelli, E., Oukka, M. & Kuchroo, V.K. IL-17 and Th17 Cells. Annu. Rev. Immunol. 27, 485–517 (2009).

    Article  CAS  Google Scholar 

  5. Weaver, C.T., Hatton, R.D., Mangan, P.R. & Harrington, L.E. IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annu. Rev. Immunol. 25, 821–852 (2007).

    Article  CAS  Google Scholar 

  6. Gaffen, S.L. Structure and signalling in the IL-17 receptor family. Nat. Rev. Immunol. (2009).

  7. Hymowitz, S.G. et al. IL-17s adopt a cystine knot fold: structure and activity of a novel cytokine, IL-17F, and implications for receptor binding. EMBO J. 20, 5332–5341 (2001).

    Article  CAS  Google Scholar 

  8. Wright, J.F. et al. Identification of an interleukin 17F/17A heterodimer in activated human CD4+ T cells. J. Biol. Chem. 282, 13447–13455 (2007).

    Article  CAS  Google Scholar 

  9. Toy, D. et al. Cutting edge: interleukin 17 signals through a heteromeric receptor complex. J. Immunol. 177, 36–39 (2006).

    Article  CAS  Google Scholar 

  10. Zheng, Y. et al. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat. Med. 14, 282–289 (2008).

    Article  CAS  Google Scholar 

  11. Ishigame, H. et al. Differential roles of interleukin-17A and -17F in host defense against mucoepithelial bacterial infection and allergic responses. Immunity 30, 108–119 (2009).

    Article  CAS  Google Scholar 

  12. O'Connor, Jr W. et al. A protective function for interleukin 17A in T cell-mediated intestinal inflammation. Nat. Immunol. 10, 603–609 (2009).

    Article  CAS  Google Scholar 

  13. Novatchkova, M., Leibbrandt, A., Werzowa, J., Neubuser, A. & Eisenhaber, F. The STIR-domain superfamily in signal transduction, development and immunity. Trends Biochem. Sci. 28, 226–229 (2003).

    Article  CAS  Google Scholar 

  14. Kramer, J.M. et al. Cutting edge: identification of a pre-ligand assembly domain (PLAD) and ligand binding site in the IL-17 receptor. J. Immunol. 179, 6379–6383 (2007).

    Article  CAS  Google Scholar 

  15. Maitra, A. et al. Distinct functional motifs within the IL-17 receptor regulate signal transduction and target gene expression. Proc. Natl. Acad. Sci. USA 104, 7506–7511 (2007).

    Article  CAS  Google Scholar 

  16. Rochman, Y., Spolski, R. & Leonard, W.J. New insights into the regulation of T cells by γc family cytokines. Nat. Rev. Immunol. 9, 480–490 (2009).

    Article  CAS  Google Scholar 

  17. Claudio, E. et al. The adaptor protein CIKS/Act1 is essential for IL-25-mediated allergic airway inflammation. J. Immunol. 182, 1617–1630 (2009).

    Article  CAS  Google Scholar 

  18. Chang, S.H., Park, H. & Dong, C. Act1 adaptor protein is an immediate and essential signaling component of interleukin-17 receptor. J. Biol. Chem. 281, 35603–35607 (2006).

    Article  CAS  Google Scholar 

  19. Qian, Y. et al. The adaptor Act1 is required for interleukin 17-dependent signaling associated with autoimmune and inflammatory disease. Nat. Immunol. 8, 247–256 (2007).

    Article  CAS  Google Scholar 

  20. Kramer, J.M. et al. Evidence for ligand-independent multimerization of the IL-17 receptor. J. Immunol. 176, 711–715 (2006).

    Article  CAS  Google Scholar 

  21. Bazan, J.F. Structural design and molecular evolution of a cytokine receptor superfamily. Proc. Natl. Acad. Sci. USA 87, 6934–6938 (1990).

    Article  CAS  Google Scholar 

  22. Wright, J.F. et al. The human IL-17F/IL-17A heterodimeric cytokine signals through the IL-17RA/IL-17RC receptor complex. J. Immunol. 181, 2799–2805 (2008).

    Article  CAS  Google Scholar 

  23. Rickel, E.A. et al. Identification of functional roles for both IL-17RB and IL-17RA in mediating IL-25-induced activities. J. Immunol. 181, 4299–4310 (2008).

    Article  CAS  Google Scholar 

  24. Shi, Y. et al. A novel cytokine receptor-ligand pair. Identification, molecular characterization, and in vivo immunomodulatory activity. J. Biol. Chem. 275, 19167–19176 (2000).

    Article  CAS  Google Scholar 

  25. Lee, J. et al. IL-17E, a novel proinflammatory ligand for the IL-17 receptor homolog IL-17Rh1. J. Biol. Chem. 276, 1660–1664 (2001).

    Article  CAS  Google Scholar 

  26. Rong, Z. et al. IL-17RD (Sef or IL-17RLM) interacts with IL-17 receptor and mediates IL-17 signaling. Cell Res. 19, 208–215 (2009).

    Article  CAS  Google Scholar 

  27. Wang, X., Lupardus, P., Laporte, S.L. & Garcia, K.C. Structural biology of shared cytokine receptors. Annu. Rev. Immunol. 27, 29–60 (2009).

    Article  Google Scholar 

  28. He, X.L. & Garcia, K.C. Structure of nerve growth factor complexed with the shared neurotrophin receptor p75. Science 304, 870–875 (2004).

    Article  CAS  Google Scholar 

  29. Wehrman, T. et al. Structural and mechanistic insights into nerve growth factor interactions with the TrkA and p75 receptors. Neuron 53, 25–38 (2007).

    Article  CAS  Google Scholar 

  30. Gong, Y., Cao, P., Yu, H.J. & Jiang, T. Crystal structure of the neurotrophin-3 and p75NTR symmetrical complex. Nature 454, 789–793 (2008).

    Article  CAS  Google Scholar 

  31. Wiesmann, C. et al. Crystal structure at 1.7 A resolution of VEGF in complex with domain 2 of the Flt-1 receptor. Cell 91, 695–704 (1997).

    Article  CAS  Google Scholar 

  32. Wang, X., Baloh, R.H., Milbrandt, J. & Garcia, K.C. Structure of artemin complexed with its receptor GFRα3: convergent recognition of glial cell line-derived neurotrophic factors. Structure 14, 1083–1092 (2006).

    Article  Google Scholar 

  33. Wiesmann, C., Ultsch, M.H., Bass, S.H. & de Vos, A.M. Crystal structure of nerve growth factor in complex with the ligand-binding domain of the TrkA receptor. Nature 401, 184–188 (1999).

    Article  CAS  Google Scholar 

  34. You, Z. et al. Interleukin-17 receptor-like gene is a novel antiapoptotic gene highly expressed in androgen-independent prostate cancer. Cancer Res. 66, 175–183 (2006).

    Article  CAS  Google Scholar 

  35. Li, T.S., Li, X.N., Chang, Z.J., Fu, X.Y. & Liu, L. Identification and functional characterization of a novel interleukin 17 receptor: a possible mitogenic activation through ras/mitogen-activated protein kinase signaling pathway. Cell. Signal. 18, 1287–1298 (2006).

    Article  Google Scholar 

  36. LaPorte, S.L. et al. Molecular and structural basis of cytokine receptor pleiotropy in the interleukin-4/13 system. Cell 132, 259–272 (2008).

    Article  CAS  Google Scholar 

  37. Dukkipati, A., Park, H.H., Waghray, D., Fischer, S. & Garcia, K.C. BacMam system for high-level expression of recombinant soluble and membrane glycoproteins for structural studies. Protein Expr. Purif. 62, 160–170 (2008).

    Article  CAS  Google Scholar 

  38. Walter, T.S. et al. Lysine methylation as a routine rescue strategy for protein crystallization. Structure 14, 1617–1622 (2006).

    Article  CAS  Google Scholar 

  39. Barton, W.A., Tzvetkova-Robev, D., Erdjument-Bromage, H., Tempst, P. & Nikolov, D.B. Highly efficient selenomethionine labeling of recombinant proteins produced in mammalian cells. Protein Sci. 15, 2008–2013 (2006).

    Article  CAS  Google Scholar 

  40. Leslie, A.G.W. Recent changes to the MOSFLM package for processing film and image plate data. Joint CCP4 + ESF-EAMCB Newsletter on Protein Crystallography 26 (1992).

  41. Collaborative Computation Project 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  42. Strong, M. et al. Toward the structural genomics of complexes: crystal structure of a PE/PPE protein complex from Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 103, 8060–8065 (2006).

    Article  CAS  Google Scholar 

  43. McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  Google Scholar 

  44. de La Fortelle, E. & Bricogne, G. SHARP: A maximum-likelihood heavy-atom parameter refinement program for the MIR and MAD methods. Methods Enzymol. 276, 472–494 (1997).

    Article  CAS  Google Scholar 

  45. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  46. Afonine, P.V., Grosse-Kunstleve, R.W. & Adams, P.D. The Phenix refinement framework. CCP4 Newsletter 42 (2005).

  47. Brunger, A.T. Version 1.2 of the Crystallography and NMR system. Nat. Protoc. 2, 2728–2733 (2007).

    Article  CAS  Google Scholar 

  48. Laskowski, R.A., Moss, D.S. & Thornton, J.M. Main-chain bond lengths and bond angles in protein structures. J. Mol. Biol. 231, 1049–1067 (1993).

    Article  CAS  Google Scholar 

  49. Hooft, R.W., Vriend, G., Sander, C. & Abola, E.E. Errors in protein structures. Nature 381, 272 (1996).

    Article  CAS  Google Scholar 

  50. DeLano, W.L. Pymol Molecular Graphics System (DeLano Scientific, San Carlos, California, 2002).

Download references

Acknowledgements

We thank S. Juo for assistance with data collection and structure determination; E. Özkan for discussions; D. Gorman (DNAX) for cDNA reagents; and the beamline staff of the Stanford Synchrotron Radiation Lightsource, Advanced Light Source and Advanced Photon Source for assistance with data collection. Supported by the National Health and Medical Research Council of Australia (L.K.E.), the US National Institutes of Health (AI51321 to K.C.G.) and the Howard Hughes Medical Institute (K.C.G.).

Author information

Authors and Affiliations

Authors

Contributions

K.C.G. initiated studies; L.K.E. and K.C.G. designed experiments; L.K.E. and S.F. did experiments; and L.K.E. and K.C.G. analyzed data and wrote manuscript.

Corresponding author

Correspondence to K Christopher Garcia.

Ethics declarations

Competing interests

K.C.G. plans to file a patent to use information gained from this crystal structure to design IL-17 therapeutics.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 (PDF 315 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ely, L., Fischer, S. & Garcia, K. Structural basis of receptor sharing by interleukin 17 cytokines. Nat Immunol 10, 1245–1251 (2009). https://doi.org/10.1038/ni.1813

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1813

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing