Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Calcium signaling in immune cells

An Erratum to this article was published on 01 February 2009

This article has been updated

Abstract

Calcium acts as a second messenger in many cell types, including lymphocytes. Resting lymphocytes maintain a low concentration of Ca2+. However, engagement of antigen receptors induces calcium influx from the extracellular space by several routes. A chief mechanism of Ca2+ entry in lymphocytes is through store-operated calcium (SOC) channels. The identification of two important molecular components of SOC channels, CRACM1 (the pore-forming subunit) and STIM1 (the sensor of stored calcium), has allowed genetic and molecular manipulation of the SOC entry pathway. In this review, we highlight advances in the understanding of Ca2+ signaling in lymphocytes with special emphasis on SOC entry. We also discuss outstanding questions and probable future directions of the field.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Routes of Ca2+ influx and efflux.
Figure 2: Hypothetical model of the various modes of Ca2+ influx in developing, mature and activated T lymphocytes.

Similar content being viewed by others

Change history

  • 16 January 2009

    NOTE: In the version of this article initially published, the published online date is 17 January 2009 and the ovals indicating store-dependent channels in the bottom row of Figure 2 are blue. The published online date should be 17 December 2008 and the ovals should be black . The errors have been corrected in the HTML and PDF versions of the article.

References

  1. Parekh, A.B. & Putney, J.W., Jr. Store-operated calcium channels. Physiol. Rev. 85, 757–810 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Liou, J. et al. STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr. Biol. 15, 1235–1241 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhang, S.L. et al. STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature 437, 902–905 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Vig, M. et al. CRACM1 is a plasma membrane protein essential for store-operated Ca2+ entry. Science 312, 1220–1223 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Feske, S. et al. A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 441, 179–185 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Zhang, S.L. et al. Genome-wide RNAi screen of Ca2+ influx identifies genes that regulate Ca2+ release-activated Ca2+ channel activity. Proc. Natl. Acad. Sci. USA 103, 9357–9362 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Philipp, S. et al. TRPC3 mediates T-cell receptor-dependent calcium entry in human T-lymphocytes. J. Biol. Chem. 278, 26629–26638 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Venkatachalam, K., Ma, H.T., Ford, D.L. & Gill, D.L. Expression of functional receptor-coupled TRPC3 channels in DT40 triple receptor InsP3 knockout cells. J. Biol. Chem. 276, 33980–33985 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Putney, J.W., Jr. Capacitative calcium entry: sensing the calcium stores. J. Cell Biol. 169, 381–382 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yuan, J.P., Zeng, W., Huang, G.N., Worley, P.F. & Muallem, S. STIM1 heteromultimerizes TRPC channels to determine their function as store-operated channels. Nat. Cell Biol. 9, 636–645 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Villereal, M.L. Mechanism and functional significance of TRPC channel multimerization. Semin. Cell Dev. Biol. 17, 618–629 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hardie, R.C. TRP channels and lipids: from Drosophila to mammalian physiology. J. Physiol. 578, 9–24 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Rao, G.K. & Kaminski, N.E. Induction of intracellular calcium elevation by Delta9-tetrahydrocannabinol in T cells involves TRPC1 channels. J. Leukoc. Biol. 79, 202–213 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Lioudyno, M.I. et al. Orai1 and STIM1 move to the immunological synapse and are up-regulated during T cell activation. Proc. Natl. Acad. Sci. USA 105, 2011–2016 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Malek, T.R. The biology of interleukin-2. Annu. Rev. Immunol. 26, 453–479 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Baba, Y. et al. Essential function for the calcium sensor STIM1 in mast cell activation and anaphylactic responses. Nat. Immunol. 9, 81–88 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Dolmetsch, R.E., Lewis, R.S., Goodnow, C.C. & Healy, J.I. Differential activation of transcription factors induced by Ca2+ response amplitude and duration. Nature 386, 855–858 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Ho, N., Gullberg, M. & Chatila, T. Activation protein 1-dependent transcriptional activation of interleukin 2 gene by Ca2+/calmodulin kinase type IV/Gr. J. Exp. Med. 184, 101–112 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Crabtree, G.R. & Olson, E.N. NFAT signaling: choreographing the social lives of cells. Cell 109, S67–S79 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Huang, G.N. et al. NFAT binding and regulation of T cell activation by the cytoplasmic scaffolding Homer proteins. Science 319, 476–481 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Stathopulos, P.B., Li, G.Y., Plevin, M.J., Ames, J.B. & Ikura, M. Stored Ca2+ depletion-induced oligomerization of stromal interaction molecule 1 (STIM1) via the EF-SAM region: an initiation mechanism for capacitive Ca2+ entry. J. Biol. Chem. 281, 35855–35862 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Liou, J., Fivaz, M., Inoue, T. & Meyer, T. Live-cell imaging reveals sequential oligomerization and local plasma membrane targeting of stromal interaction molecule 1 after Ca2+ store depletion. Proc. Natl. Acad. Sci. USA 104, 9301–9306 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Stathopulos, P.B., Zheng, L., Li, G.Y., Plevin, M.J. & Ikura, M. Structural and mechanistic insights into STIM1-mediated initiation of store-operated calcium entry. Cell 135, 110–122 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Luik, R.M., Wu, M.M., Buchanan, J. & Lewis, R.S. The elementary unit of store-operated Ca2+ entry: local activation of CRAC channels by STIM1 at ER-plasma membrane junctions. J. Cell Biol. 174, 815–825 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Luik, R.M., Wang, B., Prakriya, M., Wu, M.M. & Lewis, R.S. Oligomerization of STIM1 couples ER calcium depletion to CRAC channel activation. Nature 454, 538–542 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Baba, Y. et al. Coupling of STIM1 to store-operated Ca2+ entry through its constitutive and inducible movement in the endoplasmic reticulum. Proc. Natl. Acad. Sci. USA 103, 16704–16709 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Soboloff, J. et al. STIM2 is an inhibitor of STIM1-mediated store-operated Ca2+ entry. Curr. Biol. 16, 1465–1470 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Brandman, O., Liou, J., Park, W.S. & Meyer, T. STIM2 is a feedback regulator that stabilizes basal cytosolic and endoplasmic reticulum Ca2+ levels. Cell 131, 1327–1339 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Oh-Hora, M. et al. Dual functions for the endoplasmic reticulum calcium sensors STIM1 and STIM2 in T cell activation and tolerance. Nat. Immunol. 9, 432–443 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Peinelt, C. et al. Amplification of CRAC current by STIM1 and CRACM1 (Orai1). Nat. Cell Biol. 8, 771–773 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mercer, J.C. et al. Large store-operated calcium selective currents due to co-expression of Orai1 or Orai2 with the intracellular calcium sensor, Stim1. J. Biol. Chem. 281, 24979–24990 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Soboloff, J. et al. Orai1 and STIM reconstitute store-operated calcium channel function. J. Biol. Chem. 281, 20661–20665 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Vig, M. et al. CRACM1 multimers form the ion-selective pore of the CRAC channel. Curr. Biol. 16, 2073–2079 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yeromin, A.V. et al. Molecular identification of the CRAC channel by altered ion selectivity in a mutant of Orai. Nature 443, 226–229 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Prakriya, M. et al. Orai1 is an essential pore subunit of the CRAC channel. Nature 443, 230–233 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Lis, A. et al. CRACM1, CRACM2, and CRACM3 are store-operated Ca2+ channels with distinct functional properties. Curr. Biol. 17, 794–800 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ong, H.L. et al. Dynamic assembly of TRPC1-STIM1-Orai1 ternary complex is involved in store-operated calcium influx. Evidence for similarities in store-operated and calcium release-activated calcium channel components. J. Biol. Chem. 282, 9105–9116 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Mignen, O., Thompson, J.L. & Shuttleworth, T.J. Orai1 subunit stoichiometry of the mammalian CRAC channel pore. J. Physiol. 586, 419–425 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Ji, W. et al. Functional stoichiometry of the unitary calcium-release-activated calcium channel. Proc. Natl. Acad. Sci. USA 105, 13668–13673 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wu, M.M., Buchanan, J., Luik, R.M. & Lewis, R.S. Ca2+ store depletion causes STIM1 to accumulate in ER regions closely associated with the plasma membrane. J. Cell Biol. 174, 803–813 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Huang, G.N. et al. STIM1 carboxyl-terminus activates native SOC, Icrac and TRPC1 channels. Nat. Cell Biol. 8, 1003–1010 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Barr, V.A. et al. Dynamic movement of the calcium sensor STIM1 and the calcium channel Orai1 in activated T-cells: puncta and distal caps. Mol. Biol. Cell 19, 2802–2817 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Muik, M. et al. Dynamic coupling of the putative coiled-coil domain of ORAI1 with STIM1 mediates ORAI1 channel activation. J. Biol. Chem. 283, 8014–8022 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Gwack, Y. et al. Biochemical and functional characterization of Orai proteins. J. Biol. Chem. 282, 16232–16243 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Varnai, P., Toth, B., Toth, D.J., Hunyady, L. & Balla, T. Visualization and manipulation of plasma membrane-endoplasmic reticulum contact sites indicates the presence of additional molecular components within the STIM1-Orai1 complex. J. Biol. Chem. 282, 29678–29690 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Smani, T. et al. A novel mechanism for the store-operated calcium influx pathway. Nat. Cell Biol. 6, 113–120 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Li, Z. et al. Mapping the interacting domains of STIM1 and Orai1 in Ca2+ release-activated Ca2+ channel activation. J. Biol. Chem. 282, 29448–29456 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Penna, A. et al. The CRAC channel consists of a tetramer formed by STIM-induced dimerization of Orai dimers. Nature 456, 116–120 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Leslie, M. Mast cells show their might. Science 317, 614–616 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Nadler, M.J. & Kinet, J.P. Uncovering new complexities in mast cell signaling. Nat. Immunol. 3, 707–708 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Vig, M. et al. Defective mast cell effector functions in mice lacking the CRACM1 pore subunit of store-operated calcium release–activated calcium channels. Nat. Immunol. 9, 89–96 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Launay, P. et al. TRPM4 is a Ca2+-activated nonselective cation channel mediating cell membrane depolarization. Cell 109, 397–407 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Launay, P. et al. TRPM4 regulates calcium oscillations after T cell activation. Science 306, 1374–1377 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Vennekens, R. et al. Increased IgE-dependent mast cell activation and anaphylactic responses in mice lacking the calcium-activated nonselective cation channel TRPM4. Nat. Immunol. 8, 312–320 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Chang, W.C. et al. Local Ca2+ influx through Ca2+ release-activated Ca2+ (CRAC) channels stimulates production of an intracellular messenger and an intercellular pro-inflammatory signal. J. Biol. Chem. 283, 4622–4631 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Rettig, J. & Neher, E. Emerging roles of presynaptic proteins in Ca++-triggered exocytosis. Science 298, 781–785 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Kalesnikoff, J. et al. SHIP negatively regulates IgE + antigen-induced IL-6 production in mast cells by inhibiting NF-κB activity. J. Immunol. 168, 4737–4746 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Jenkins, M.K., Schwartz, R.H. & Pardoll, D.M. Effects of cyclosporine A on T cell development and clonal deletion. Science 241, 1655–1658 (1988).

    Article  CAS  PubMed  Google Scholar 

  59. Gao, E.K., Lo, D., Cheney, R., Kanagawa, O. & Sprent, J. Abnormal differentiation of thymocytes in mice treated with cyclosporin A. Nature 336, 176–179 (1988).

    Article  CAS  PubMed  Google Scholar 

  60. Bueno, O.F., Brandt, E.B., Rothenberg, M.E. & Molkentin, J.D. Defective T cell development and function in calcineurin A β-deficient mice. Proc. Natl. Acad. Sci. USA 99, 9398–9403 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Neilson, J.R., Winslow, M.M., Hur, E.M. & Crabtree, G.R. Calcineurin B1 is essential for positive but not negative selection during thymocyte development. Immunity 20, 255–266 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Oukka, M. et al. The transcription factor NFAT4 is involved in the generation and survival of T cells. Immunity 9, 295–304 (1998).

    Article  CAS  PubMed  Google Scholar 

  63. Gwack, Y. et al. Hair loss and defective T and B cell function in mice lacking ORAI1. Mol. Cell Biol. (2008).

  64. DeHaven, W.I., Smyth, J.T., Boyles, R.R. & Putney, J.W., Jr. Calcium inhibition and calcium potentiation of Orai1, Orai2, and Orai3 calcium release-activated calcium channels. J. Biol. Chem. 282, 17548–17556 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Jin, J. et al. Deletion of Trpm7 disrupts embryonic development and thymopoiesis without altering Mg2+ homeostasis. Science 322, 756–760 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lewis, R.S. & Cahalan, M.D. Mitogen-induced oscillations of cytosolic Ca2+ and transmembrane Ca2+ current in human leukemic T cells. Cell Regul. 1, 99–112 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zweifach, A. & Lewis, R.S. Mitogen-regulated Ca2+ current of T lymphocytes is activated by depletion of intracellular Ca2+ stores. Proc. Natl. Acad. Sci. USA 90, 6295–6299 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Partiseti, M. et al. The calcium current activated by T cell receptor and store depletion in human lymphocytes is absent in a primary immunodeficiency. J. Biol. Chem. 269, 32327–32335 (1994).

    Article  CAS  PubMed  Google Scholar 

  69. Feske, S. et al. Severe combined immunodeficiency due to defective binding of the nuclear factor of activated T cells in T lymphocytes of two male siblings. Eur. J. Immunol. 26, 2119–2126 (1996).

    Article  CAS  PubMed  Google Scholar 

  70. Peng, S.L., Gerth, A.J., Ranger, A.M. & Glimcher, L.H. NFATc1 and NFATc2 together control both T and B cell activation and differentiation. Immunity 14, 13–20 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. Kotturi, M.F., Hunt, S.V. & Jefferies, W.A. Roles of CRAC and Cav-like channels in T cells: more than one gatekeeper? Trends Pharmacol. Sci. 27, 360–367 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Badou, A. et al. Critical role for the β regulatory subunits of Cav channels in T lymphocyte function. Proc. Natl. Acad. Sci. USA 103, 15529–15534 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Gomez-Ospina, N., Tsuruta, F., Barreto-Chang, O., Hu, L. & Dolmetsch, R. The C terminus of the L-type voltage-gated calcium channel Cav1.2 encodes a transcription factor. Cell 127, 591–606 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Gouy, H., Cefai, D., Christensen, S.B., Debre, P. & Bismuth, G. Ca2+ influx in human T lymphocytes is induced independently of inositol phosphate production by mobilization of intracellular Ca2+ stores. A study with the Ca2+ endoplasmic reticulum-ATPase inhibitor thapsigargin. Eur. J. Immunol. 20, 2269–2275 (1990).

    Article  CAS  PubMed  Google Scholar 

  75. Telford, W.G. & Miller, R.A. Detection of plasma membrane Ca2+-ATPase activity in mouse T lymphocytes by flow cytometry using fluo-3-loaded vesicles. Cytometry 24, 243–250 (1996).

    Article  CAS  PubMed  Google Scholar 

  76. Bautista, D.M., Hoth, M. & Lewis, R.S. Enhancement of calcium signalling dynamics and stability by delayed modulation of the plasma-membrane calcium-ATPase in human T cells. J. Physiol. (Lond.) 541, 877–894 (2002).

    Article  CAS  Google Scholar 

  77. Jayaraman, T., Ondriasova, E., Ondrias, K., Harnick, D.J. & Marks, A.R. The inositol 1,4,5-trisphosphate receptor is essential for T-cell receptor signaling. Proc. Natl. Acad. Sci. USA 92, 6007–6011 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Guse, A.H. et al. Regulation of calcium signalling in T lymphocytes by the second messenger cyclic ADP-ribose. Nature 398, 70–73 (1999).

    Article  CAS  PubMed  Google Scholar 

  79. Sei, Y., Gallagher, K.L. & Basile, A.S. Skeletal muscle type ryanodine receptor is involved in calcium signaling in human B lymphocytes. J. Biol. Chem. 274, 5995–6002 (1999).

    Article  CAS  PubMed  Google Scholar 

  80. Guerini, D., Coletto, L. & Carafoli, E. Exporting calcium from cells. Cell Calcium 38, 281–289 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Balasubramanyam, M., Rohowsky-Kochan, C., Reeves, J.P. & Gardner, J.P. Na+/Ca2+ exchange-mediated calcium entry in human lymphocytes. J. Clin. Invest. 94, 2002–2008 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Saris, N.E. & Carafoli, E. A historical review of cellular calcium handling, with emphasis on mitochondria. Biochemistry (Mosc.) 70, 187–194 (2005).

    Article  CAS  Google Scholar 

  83. Hoth, M., Fanger, C.M. & Lewis, R.S. Mitochondrial regulation of store-operated calcium signaling in T lymphocytes. J. Cell Biol. 137, 633–648 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Beeton, C. & Chandy, K.G. Potassium channels, memory T cells, and multiple sclerosis. Neuroscientist 11, 550–562 (2005).

    Article  CAS  PubMed  Google Scholar 

  85. Cowen, D.S. et al. Extracellular adenosine triphosphate activates calcium mobilization in human phagocytic leukocytes and neutrophil/monocyte progenitor cells. J. Clin. Invest. 83, 1651–1660 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Cui, J., Bian, J.S., Kagan, A. & McDonald, T.V. CaT1 contributes to the stores-operated calcium current in Jurkat T-lymphocytes. J. Biol. Chem. 277, 47175–47183 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. Perraud, A.L. et al. ADP-ribose gating of the calcium-permeable LTRPC2 channel revealed by Nudix motif homology. Nature 411, 595–599 (2001).

    Article  CAS  PubMed  Google Scholar 

  88. Sano, Y. et al. Immunocyte Ca2+ influx system mediated by LTRPC2. Science 293, 1327–1330 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. Nadler, M.J. et al. LTRPC7 is a Mg.ATP-regulated divalent cation channel required for cell viability. Nature 411, 590–595 (2001).

    Article  CAS  PubMed  Google Scholar 

  90. Prakriya, M. & Lewis, R.S. Separation and characterization of currents through store-operated CRAC channels and Mg2+-inhibited cation (MIC) channels. J. Gen. Physiol. 119, 487–507 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Shuttleworth, T.J. What drives calcium entry during [Ca2+]i oscillations?–challenging the capacitative model. Cell Calcium 25, 237–246 (1999).

    Article  CAS  PubMed  Google Scholar 

  92. Dellis, O. et al. Ca2+ entry through plasma membrane IP3 receptors. Science 313, 229–233 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank P. Rao and D. Okuhara for discussions and J.W. Putney for critical reading of this manuscript, and we apologize to those colleagues whose work we could not cite because of space limitations. Supported by the Cancer Research Institute–Irvington Institute Fellowship Program (M.V.) and the US National Institutes of Health (GM 053950 to J.-P.K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Vig.

Ethics declarations

Competing interests

M.V. & J.-P.K. are consultants for Synta Pharmaceuticals.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vig, M., Kinet, JP. Calcium signaling in immune cells. Nat Immunol 10, 21–27 (2009). https://doi.org/10.1038/ni.f.220

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.f.220

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing