Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Natural killer cells determine the outcome of B cell–mediated autoimmunity

Abstract

Natural killer (NK) cells can affect the outcome of adaptive immune responses. NK cells, but not NK1.1+ T cells, were found to participate in the development of myasthenia gravis (a T cell–dependent, B cell– and antibody-mediated autoimmune disease) in C57BL/6 mice. The requirement for NK cells was reflected by the lack of a type 1 helper T cell response and antibodies to the acetylcholine receptor in both NK1.1+ cell–depleted and NK cell–deficient IL-18−/− mice. These findings establish a previously unrecognized link between NK cells and autoreactive T and B cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Incidence and severity of EAMG in NK1.1+ cell–depleted and NKT cell–deficient mice.
Figure 2: Functional properties of NK cells in EAMG.
Figure 3: NK1.1+ cell depletion before immunization with AChR + CFA leads to enhanced TGF-β1 production by T cells that down-regulate TH1 type immune responses.
Figure 4: NK1.1+ cell depletion before immunization with AChR and CFA impairs anti-AChR IgG and IgG2b isotype responses.
Figure 5: Effects of NKT cell deficiency on autoreactive T and B cell responses.
Figure 6: Resistance to EAMG induction in IL-18−/− mice is associated with defective NK cell function.

Similar content being viewed by others

References

  1. Tak, P. P. et al. Granzyme-positive cytotoxic cells are specifically increased in early rheumatoid synovial tissue. Arthritis Rheum. 37, 1735–1743 (1994).

    Article  CAS  Google Scholar 

  2. Dalakas, M. C. & Illa., I. Common variable immunodeficiency and inclusion body myositis: a distinct myopathy mediated by natural killer cells. Ann. Neurol. 37, 806–810 (1995).

    Article  CAS  Google Scholar 

  3. Garcia-Suarez, J. et al. Persistent lymphocytosis of natural killer cells in autoimmune thrombocytopenic purpura (ATP) patients after splenectomy. Br. J. Haemat. 89, 653–655 (1995).

    Article  CAS  Google Scholar 

  4. Zhang, B., Yamamura, T., Kondo, T., Fujiwara, M. & Tabira, T. Regulation of experimental autoimmune encephalomyelitis by natural killer (NK) cells. J. Exp. Med. 186,1677–1687 (1997).

    Article  CAS  Google Scholar 

  5. Matsumoto, Y. et al. Role of natural killer cells and TCRγδ T cells in acute autoimmune encephalomyelitis. Eur. J. Immunol. 28, 1681–1688 (1998).

    Article  CAS  Google Scholar 

  6. Fort, M. M., Leach, M. W. & Rennick, D. M. A role for NK cells as regulator of CD4+ T cells in a transfer model of colitis. J. Immunol. 161, 3256–3261 (1998).

    CAS  PubMed  Google Scholar 

  7. Lehuen, A. et al. Overexpression of natural killer T cells protects Vα 14-Jα 281 transgenic nonobese diabetic mice against diabetes. J. Exp. Med. 188, 1831–1839 (1998).

    Article  CAS  Google Scholar 

  8. Litzenburger, T. et al. B lymphocytes producing demyelinating autoantibodies: development and function in gene-targeted transgenic mice. J. Exp. Med. 188, 169–180 (1998).

    Article  CAS  Google Scholar 

  9. Drachman, D. B. Myasthenia gravis. N. Engl. J. Med. 330, 1797–1810 (1994).

    Article  CAS  Google Scholar 

  10. Berman, P. W. & Patrick, J. Experimental myasthenia gravis: a murine system. J. Exp. Med. 151, 204–223 (1980).

    Article  CAS  Google Scholar 

  11. Balasa, B. et al. Interferon γ (IFN-γ) is necessary for the genesis of acetylcholine receptor-induced clinical experimental myasthenia gravis in mice. J. Exp. Med. 186, 385–391 (1997).

    Article  CAS  Google Scholar 

  12. Moiola, L. et al. IL-12 is involved in the induction of experimental autoimmune myasthenia gravis, an antibody mediated disease. Eur. J. Immunol. 28, 2487–2497 (1998).

    Article  CAS  Google Scholar 

  13. Shi, F. -D. et al. Differential requirements for CD28 and CD40 ligand in the induction of experimental autoimmune myasthenia gravis. Eur. J. Immunol. 28, 3587–3593 (1998).

    Article  CAS  Google Scholar 

  14. Cui, J.Q. et al. Requirement for Vα 14 NKT cells in IL-12-mediated rejection of tumors. Science 278, 1623–1626 (1997).

    Article  CAS  Google Scholar 

  15. Mendiratta, S.K. et al. CD1d1 mutant mice are deficient in natural T cells that promptly produce IL-4. Immunity 6, 469–477 (1997).

    Article  CAS  Google Scholar 

  16. Mason, D. & Powrie, F. Control of immune pathology by regulatory T cells. Curr. Opin. Immunol. 10, 649–655 (1998).

    Article  CAS  Google Scholar 

  17. Chen, W., Jin, W. & Wahl, S. M. Engagement of cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) induces transforming growth factor β (TGF-β) production by murine CD4+ T cells. J. Exp. Med. 188, 1849–1857 (1998).

    Article  CAS  Google Scholar 

  18. Okamura, H. et al. Cloning of a new cytokine that induces IFN-γ production by T cells. Nature 378, 88–91 (1995).

    Article  CAS  Google Scholar 

  19. Takeda, K. et al. Defective NK cell activity and Th1 responses in IL-18-deficient mice. Immunity 8, 383–390 (1998).

    Article  CAS  Google Scholar 

  20. Romagnani, S. Induction of TH1 and TH2 responses: a key role for the “natural” immune responses? Immunol. Today. 13, 379–311 (1992).

    Article  CAS  Google Scholar 

  21. Douglas, T. F. The instructive role of innate immunity in the acquired immune response. Science 272, 50–54 (1996).

    Article  Google Scholar 

  22. Mombaerts, P. et al. RAG-1-deficient mice have no mature B and T lymphocytes. Cell 68, 869–877 (1992).

    Article  CAS  Google Scholar 

  23. Dalton, D.K. et al. Multiple defects of immune cell function in mice with disrupted interferon-γ genes. Science 259, 1739–1745 (1993).

    Article  CAS  Google Scholar 

  24. Shi, F. -D. et al. Mechanisms of nasal tolerance induction in experimental autoimmune myasthenia gravis: Identification of regulatory cells. J. Immunol. 162, 5757–5763 (1999).

    CAS  PubMed  Google Scholar 

  25. Gray, J. D., Hirokawa. M. & Horwitz. D. A. The role of TGF-β in the generation of suppression: an interaction between CD8+ T and NK cells. J. Exp. Med. 180, 1937–1942 (1994).

    Article  CAS  Google Scholar 

  26. Gray, J. D., Hirokawa, M., Ohtsuka, K. & Horwitz, D. A. Generation of an inhibitory circuit involving CD8+ T cells, IL-2, and NK cell-derived TGF-β: Contrasting effects of anti-CD2 and anti-CD3. J. Immunol. 160, 2248–2254 (1998).

    CAS  PubMed  Google Scholar 

  27. Yuan, D., Koh, C. Y. & Wilder, J. A. Interactions between B lymphocytes and NK cells. FASEB J. 8, 1012–1018 (1994).

    Article  CAS  Google Scholar 

  28. Seaman, W. E., Sleisenger, M., Eriksson, E. & Koo., G. C. Depletion of natural killer cells in mice by monoclonal antibody to NK-1.1: Reduction in host defense against malignancy without loss of cellular or humoral immunity. J. Immunol. 138, 4539–4544 (1987).

    CAS  PubMed  Google Scholar 

  29. Snapper, C. M. & Mond, J. J. Towards a comprehensive view of immunoglobulin class switching. Immunol. Today 14, 15–18 (1993).

    Article  CAS  Google Scholar 

  30. Ridderstad, A., Lettesjö, H., Abedi-Valugerdi, M. & Möller, E. Differential sensitivity to transforming growth factor (TGF)-β of CBA and of CBA/N B cells demonstrates that the IgG2b inducing factor in synovial fluid from rheumatoid arthritis patients is not identical to TGF-β. Int. Immunol. 7, 459–469 (1995).

    Article  CAS  Google Scholar 

  31. Hong, S. et al. Lipid antigen presentation in the immune system: lessons learned from CD1d knockout mice. Immunol. Rev. 169, 31–44 (1999).

    Article  CAS  Google Scholar 

  32. Rauch, H. C., Montgometry, I. N. & Kaplan, J. Natural killer cell activity in multiple sclerosis and myasthenia gravis. Immunol. Invest. 14, 427–434 (1985).

    Article  CAS  Google Scholar 

  33. Vranes, Z., Poljakovic, Z. & Marusic, M. Natural killer cell number and activity in multiple sclerosis. J. Neurol. Sci. 94, 115–123 (1989).

    Article  CAS  Google Scholar 

  34. Lindstrom J., Einarson, B. & Tzartos, S. Production and assay of antibodies to AChR. Methods Enzymol. 74, 432–460 (1981).

    Article  CAS  Google Scholar 

  35. Deibler, G. E., Martensson, R. E. & Kies, M. W. Large scale preparation of myelin basic protein from central nervous tissue of several mammalian species. Prep. Biochem. 2, 139–164 (1972).

    CAS  PubMed  Google Scholar 

  36. Koo, G. C. & Peppard, J. R. Establishment of monoclonal anti-NK1.1 antibody. Hybridoma 3, 301–303 (1984).

    Article  CAS  Google Scholar 

  37. Dasch, J. R., Pace, D. R., Waegell, W., Ineaga, D. & Ellingsworth, L. Monoclonal antibodies recognizing transforming growth factor-β. Bioactivity neutralization and transforming growth factor-β2 affinity purification. J. Immunol. 142, 1536–1541 (1989).

    CAS  PubMed  Google Scholar 

  38. Chambers, B. J., Salcedo, M. & Ljunggren, H. G. Triggering of natural killer cells by the costimulatory molecule CD80 (B7-1). Immunity 5, 311–317 (1996).

    Article  CAS  Google Scholar 

  39. Korsgren, M. et al. Natural killer cells determine development of allergen-induced eosinophilic airway inflammation in mice. J. Exp. Med. 189, 553–562 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank N. Sarvetnick for reading the manuscript; T. Takeda and S. Akira for IL-18 mutant mice; M. T. Bejarano, L. Cervenak and members of the Ljunggren group for discussions; P. H. van der Meide, B. Wahren, M. Levi, M. Mustafa and M. Korsgren for antibodies and other reagents; M. L. Solberg, M. Hagelin and B. Wester for technical assistance. Supported by grants from the Swedish Medical Research Council, the Swedish Multiple Sclerosis Society, the Swedish Cancer Society, the Petrus and Augusta Hedlund foundation, the Lars Hierta foundation, the Magnus Bergwall foundation, the Åke Wiberg foundation and the Karolinska Institutet.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Gustaf Ljunggren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, FD., Wang, HB., Li, H. et al. Natural killer cells determine the outcome of B cell–mediated autoimmunity. Nat Immunol 1, 245–251 (2000). https://doi.org/10.1038/79792

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/79792

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing