Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Low atmospheric CO2 levels during the Little Ice Age due to cooling-induced terrestrial uptake

Abstract

Low atmospheric carbon dioxide (CO2) concentration1 during the Little Ice Age has been used to derive the global carbon cycle sensitivity to temperature2. Recent evidence3 confirms earlier indications4 that the low CO2 was caused by increased terrestrial carbon storage. It remains unknown whether the terrestrial biosphere responded to temperature variations, or there was vegetation re-growth on abandoned farmland5. Here we present a global numerical simulation of atmospheric carbonyl sulfide concentrations in the pre-industrial period. Carbonyl sulfide concentration is linked to changes in gross primary production6 and shows a positive anomaly7 during the Little Ice Age. We show that a decrease in gross primary production and a larger decrease in ecosystem respiration is the most likely explanation for the decrease in atmospheric CO2 and increase in atmospheric carbonyl sulfide concentrations. Therefore, temperature change, not vegetation re-growth, was the main cause of the increased terrestrial carbon storage. We address the inconsistency between ice-core CO2 records from different sites8 measuring CO2 and δ13CO2 in ice from Dronning Maud Land (Antarctica). Our interpretation allows us to derive the temperature sensitivity of pre-industrial CO2 fluxes for the terrestrial biosphere (γL = −10 to −90 Pg C K−1), implying a positive climate feedback and providing a benchmark to reduce model uncertainties9.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Carbon cycle and temperature variability over the LIA.
Figure 2: Comparison of CO2 records.
Figure 3: Double deconvolution of DML CO2 and δ13C.

Similar content being viewed by others

References

  1. MacFarling Meure, C. et al. Law Dome CO2, CH4 and N2O ice core records extended to 2000 years BP. Geophys. Res. Lett. 33, L14810 (2006).

    Article  Google Scholar 

  2. Cox, P. & Jones, C. Climate change—illuminating the modern dance of climate and CO2 . Science 321, 1642–1644 (2008).

    Article  Google Scholar 

  3. Bauska, T. K. et al. Links between atmospheric carbon dioxide, the land carbon reservoir and climate over the past millennium. Nature Geosci. 8, 383–387 (2015).

    Article  Google Scholar 

  4. Trudinger, C. T., Enting, I. G., Francey, R. J., Etheridge, D. M. & Rayner, P. J. Long-term variability in the global carbon cycle inferred from a high-precision CO2 and δ13C ice-core record. Tellus B 51, 233–248 (1999).

    Article  Google Scholar 

  5. Kaplan, J. O. Climate or humans? Nature Geosci. 8, 335–336 (2015).

    Article  Google Scholar 

  6. Montzka, S. A. et al. On the global distribution, seasonality, and budget of atmospheric carbonyl sulfide (COS) and some similarities to CO2 . J. Geophys. Res. 112, D09302 (2007).

    Article  Google Scholar 

  7. Aydin, M., Williams, M. B., Tatum, C. & Saltzman, E. S. Carbonyl sulfide in air extracted from a South Pole ice core: a 2000 year record. Atmos. Chem. Phys. 8, 7533–7542 (2008).

    Article  Google Scholar 

  8. Ahn, J. et al. Atmospheric CO2 over the last 1000 years: a high-resolution record from the West Antarctic Ice Sheet (WAIS) Divide ice core. Glob. Biogeochem. Cycles 26, GB2027 (2012).

    Article  Google Scholar 

  9. Friedlingstein, P. et al. Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks. J. Clim. 27, 511–526 (2014).

    Article  Google Scholar 

  10. Neukom, R. et al. Inter-hemispheric temperature variability over the past millennium. Nature Clim. Change 4, 362–367 (2014).

    Article  Google Scholar 

  11. Ruddiman, W. F. The early anthropogenic hypothesis: challenges and responses. Rev. Geophys. 45, RG4001 (2007).

    Article  Google Scholar 

  12. Berry, J. et al. A coupled model of the global cycles of carbonyl sulfide and CO2: a possible new window on the carbon cycle. J. Geophys. Res. 118, 842–852 (2013).

    Article  Google Scholar 

  13. Kettle, A. J., Kuhn, U., von Hobe, M., Kesselmeier, J. & Andreae, M. O. Global budget of atmospheric carbonyl sulfide: temporal and spatial variations of the dominant sources and sinks. J. Geophys. Res. 107, 4658 (2002).

    Article  Google Scholar 

  14. Pongratz, J., Caldeira, K., Reick, C. H. & Claussen, M. Coupled climate–carbon simulations indicate minor global effects of wars and epidemics on atmospheric CO2 between 800 and 1850. Holocene 21, 843–851 (2011).

    Article  Google Scholar 

  15. Kaplan, J. O., Krumhardt, K. M. & Zimmermann, N. E. The effects of land use and climate change on the carbon cycle of Europe over the past 500 years. Glob. Change Biol. 18, 902–914 (2012).

    Article  Google Scholar 

  16. Rubino, M., D’Onofrio, A., Seki, O. & Bandle, J. Ice-core records of biomass burning. Anthropocene Rev. http://dx.doi.org/10.1177/2053019615605117 (2015).

  17. Arora, V. K. et al. Carbon–concentration and carbon–climate feedbacks in CMIP5 earth system models. J. Clim. 26, 5289–5314 (2013).

    Article  Google Scholar 

  18. Moberg, A., Sonechkin, D. M., Holmgren, K., Datsenko, N. M. & Karlén, W. Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data. Nature 433, 613–617 (2005).

    Article  Google Scholar 

  19. Mann, M. E. et al. Global signatures and dynamical origins of the Little Ice Age and medieval climate anomaly. Science 326, 1256–1260 (2009).

    Article  Google Scholar 

  20. Christiansen, B. & Ljungqvist, F. C. The extra-tropical Northern Hemisphere temperature in the last two millennia: reconstructions of low-frequency variability. Clim. Past 8, 765–786 (2012).

    Article  Google Scholar 

  21. PAGES 2k Consortium Continental-scale temperature variability during the past two millennia. Nature Geosci. 6, 339–346 (2013).

    Article  Google Scholar 

  22. Siegenthaler, U. et al. Supporting evidence from the EPICA Dronning Maud Land ice core for atmospheric CO2 changes during the past millennium. Tellus B 57, 51–57 (2005).

    Article  Google Scholar 

  23. Rubino, M. et al. A revised 1000 year atmospheric δ13C-CO2 record from Law Dome and South Pole, Antarctica. J. Geophys. Res. 118, 8482–8499 (2013).

    Google Scholar 

  24. Mitchell, L. E. et al. Observing and modeling the influence of layering on bubble trapping in polar firn. J. Geophys. Res. 120, 2558–2574 (2015).

    Google Scholar 

  25. Trudinger, C. M., Enting, I. G., Rayner, P. J. & Francey, R. J. Kalman filter analysis of ice core data 2. Double deconvolution of CO2 and δ13C measurements. J. Geophys. Res. 107, 4423 (2002).

    Article  Google Scholar 

  26. Frank, D. C. et al. Ensemble reconstruction constraints on the global carbon cycle sensitivity to climate. Nature 463, 527–530 (2010).

    Article  Google Scholar 

  27. Friedlingstein, P., Dufresne, J. L., Cox, P. M. & Rayner, P. How positive is the feedback between climate change and the carbon cycle? Tellus B 55, 692–700 (2003).

    Article  Google Scholar 

  28. Joos, F. et al. Carbon dioxide and climate impulse response functions for the computation of greenhouse gas metrics: a multi-model analysis. Atmos. Chem. Phys. 13, 2793–2825 (2013).

    Article  Google Scholar 

  29. Scheffer, M., Brovkin, V. & Cox, P. Positive feedback between global warming and atmospheric CO2 concentration inferred from past climate change. Geophys. Res. Lett. 33, L10702 (2006).

    Article  Google Scholar 

  30. Lewis, S. L. & Maslin, M. A. Defining the anthropocene. Nature 519, 171–180 (2015).

    Article  Google Scholar 

  31. Campbell, J. E. et al. Atmospheric carbonyl sulfide sources from anthropogenic activity: implications for carbon cycle constraints. Geophys. Res. Lett. 42, 3004–3010 (2015).

    Article  Google Scholar 

  32. Campbell, J. E. et al. Photosynthetic control of atmospheric carbonyl sulfide during the growing season. Science 322, 1085–1088 (2008).

    Article  Google Scholar 

  33. Maseyk, K. et al. Sources and sinks of carbonyl sulfide in an agricultural field in the Southern Great Plain. Proc. Natl Acad. Sci. USA 111, 9064–9069 (2014).

    Article  Google Scholar 

  34. Stimler, K., Berry, J. A., Montzka, S. A. & Yakir, D. Association between COS uptake and 18Δ during gas exchange in C3 and C4 leaves. Plant Physiol. 157, 509–517 (2011).

    Article  Google Scholar 

  35. von Hobe, M., Najjar, R. G., Kettle, A. J. & Andreae, M. O. Photochemical and physical modeling of carbonyl sulfide in the ocean. J. Geophys. Res. 108, 3229 (2003).

    Article  Google Scholar 

  36. Lanois, T., Belviso, S., Bopp, L., Fichot, C. G. & Peylin, P. A new model for the global biogeochemical cycle of carbonyl sulfide - Part 1: Assessment of direct marine emissions with an oceanic general circulation and biogeochemistry model. Atmos. Chem. Phys. Discuss. 14, 20677–20720 (2014).

    Article  Google Scholar 

  37. Aydin, M. et al. Carbonyl sulfide hydrolysis in Antarctic ice cores and an atmospheric history for the last 8000 years. J. Geophys. Res. 119, 8500–8514 (2014).

    Google Scholar 

  38. Mulvaney, R., Bremner, S., Tait, A. & Audley, N. A medium depth ice core drill. Mem. Natl Inst. Polar Res. 56, 82–90 (2002).

    Google Scholar 

  39. Bräunlich, M. et al. Changes in the global atmospheric methane budget over the last decades inferred from 13C and D isotopic analysis of Antarctic firn air. J. Geophys. Res. 106, 20456–20481 (2001).

    Article  Google Scholar 

  40. Trudinger, C. M. et al. Modeling air movement and bubble trapping in firn. J. Geophys. Res. 102, 6747–6763 (1997).

    Article  Google Scholar 

  41. Trudinger, C. M. et al. How well do different tracers constrain the firn diffusivity profile? Atmos. Chem. Phys. 13, 1485–1510 (2013).

    Article  Google Scholar 

  42. Hofstede, M. C. et al. Firn accumulation records for the past 1000 years on the basis of dielectric profiling of six cores from Dronning Maud Land, Antarctica. J. Glaciol. 169, 279–291 (2004).

    Article  Google Scholar 

  43. Plummer, C. T. et al. An independently dated 2000-yr volcanic record from Law Dome, East Antarctica, including a new perspective on the dating of the 1450s CE eruption of Kuwae, Vanuatu. Clim. Past 8, 1929–1940 (2012).

    Article  Google Scholar 

  44. Smith, A. et al. In search of in situ radiocarbon in Law Dome ice and firn. Nucl. Instrum. Methods Phys. Res. B 172, 610–622 (2000).

    Article  Google Scholar 

  45. Enting, I. G. Inverse problems and complexity in earth system science. In Complex Physical, Biophysical and Econophysical Systems. Proc. 22nd Canberra Int. Phys. Summer School (The Australian National University, 2010).

  46. Enting, I. G. Laplace transform analysis of the carbon cycle. Environ. Modelling Softw. 22, 1488–1497 (2007).

    Article  Google Scholar 

  47. Lehner, F. et al. Climate and carbon cycle dynamics in a CESM simulation from 850 to 2100 CE. Earth Syst. Dyn. 6, 411–434 (2015).

    Article  Google Scholar 

  48. Bauska, T. K. et al. Carbon Cycle Variability During the Last Millennium and Last Deglaciation PhD thesis, Oregon State Univ. (2013).

Download references

Acknowledgements

This work was undertaken as part of the Australian Climate Change Science Program, funded by the Australian government—Department of the Environment, the Bureau of Meteorology and CSIRO. We thank S. Coram, R. Gregory, D. Thornton and D. Spencer of CSIRO for their analytical support and S. Allin for ice handling. W. Sturges recognizes the CSIRO Fröhlich Fellowship for supporting a visit to CSIRO, Aspendale. P.J.R. was supported by an Australian Professorial Fellowship (DP1096309). M.R.’s visit to CSIRO and D.M.E.’s visit to the Second University of Naples were supported by the Italian POLIGRID project (CUP B65B0900002007). The DML ice was sampled using funding from the Natural Environment Research Council (grant NE/F021194/1). We thank the British Antarctic Survey for providing DML ice samples. The Australian Antarctic Science Program and ANSTO supported drilling of DSS0506 through the AINSE grant and AAS grants 4061 and 3064. We thank P. Fraser for useful comments.

Author information

Authors and Affiliations

Authors

Contributions

D.M.E. conceived the study. D.M.E. and M.R. planned the project. D.M.E., A.M.S., M.A.J.C., R.M. and W.T.S. sampled, dated and provided ice cores. M.R., D.M.E., C.E.A., R.L.L. and L.P.S. carried out the measurements. C.M.T. developed and ran the firn modelling and the KFDD. P.J.R., M.R., C.M.T. and D.M.E. developed the COS model and interpreted the results. I.E., M.R., D.M.E. and C.M.T. performed the carbon sensitivity to temperature analysis. All authors contributed to results interpretation and manuscript writing.

Corresponding author

Correspondence to M. Rubino.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rubino, M., Etheridge, D., Trudinger, C. et al. Low atmospheric CO2 levels during the Little Ice Age due to cooling-induced terrestrial uptake. Nature Geosci 9, 691–694 (2016). https://doi.org/10.1038/ngeo2769

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2769

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing