Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Storm track processes and the opposing influences of climate change

Abstract

Extratropical cyclones are storm systems that are observed to travel preferentially within confined regions known as storm tracks. They contribute to precipitation, wind and temperature extremes in mid-latitudes. Cyclones tend to form where surface temperature gradients are large, and the jet stream influences their speed and direction of travel. Storm tracks shape the global climate through transport of energy and momentum. The intensity and location of storm tracks varies seasonally, and in response to other natural variations, such as changes in tropical sea surface temperature. A hierarchy of numerical models of the atmosphere–ocean system — from highly idealized to comprehensive — has been used to study and predict responses of storm tracks to anthropogenic climate change. The future position and intensity of storm tracks depend on processes that alter temperature gradients. However, different processes can have opposing influences on temperature gradients, which leads to a tug of war on storm track responses and makes future projections more difficult. For example, as climate warms, surface shortwave cloud radiative changes increase the Equator-to-pole temperature gradient, but at the same time, longwave cloud radiative changes reduce this gradient. Future progress depends on understanding and accurately quantifying the relative influence of such processes on the storm tracks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Wintertime (December–February, DJF, in the Northern Hemisphere and June–August, JJA, in the Southern Hemisphere) storm tracks.
Figure 2: Mid-latitude precipitation extremes associated with storm tracks.
Figure 3: Schematic of a storm track.
Figure 4: Coupling between tropical Pacific SST and the storm track.

Similar content being viewed by others

References

  1. Hoskins, B. J. & Hodges, K. New perspectives on the Northern Hemisphere winter storm tracks. J. Atmos. Sci. 59, 1041–1061 (2002).

    Article  Google Scholar 

  2. Hoskins, B. J. & Hodges, K. A new perspective on Southern Hemisphere storm tracks. J. Clim. 18, 4108–4129 (2005).

    Article  Google Scholar 

  3. Chang, K. M., Lee, S. & Swanson, K. L. Storm track dynamics. J. Clim. 15, 2163–2183 (2002).

    Article  Google Scholar 

  4. Pfahl, S., Madonna, E., Boettcher, M., Joos, H. & Wernli, H. Warm conveyor belts in the ERA-Interim dataset (1979–2010). Part II: Moisture origin and relevance for precipitation. J. Clim. 27, 27–40 (2014).

    Article  Google Scholar 

  5. Catto, J. L. & Pfahl, S. The importance of fronts for extreme precipitation. J. Geophys. Res. Atmos. 118, 10791–10801 (2013).

    Article  Google Scholar 

  6. Dacre, H. F., Clark, P. A., Martinez-Alvarado, O., Stringer, M. A. & Lavers, D. A. How do atmospheric rivers form? Bull. Am. Meteorol. Soc. 96, 1243–1255 (2015).

    Article  Google Scholar 

  7. Roberts J. F. et al. The XWS open access catalogue of extreme European windstorms from 1979 to 2012. Nat. Hazards Earth Syst. Sci. 14, 2487–2501 (2014).

    Article  Google Scholar 

  8. Catto, J. L., Shaffrey, L. C. & Hodges, K. I. Can climate models capture the structure of extratropical cyclones? J. Clim. 23, 1621–1635 (2010).

    Article  Google Scholar 

  9. Baker, L. H., Gray, S. L. & Clark P. Idealised simulations of sting-jet cyclones. Q. J. R. Meteorol. Soc. 140, 96–110 (2014).

    Article  Google Scholar 

  10. Fink, A. H., Brucher, T., Ermert, V. Kruger, A. & Pinto, J. G. The European storm Kyrill in January 2007: synoptic evolution, meteorological impacts and some considerations with respect to climate change. Nat. Hazards Earth Syst. Sci. 9, 405–423 (2009).

    Article  Google Scholar 

  11. Pfahl, S. & Wernli, H. Quantifying the relevance of atmospheric blocking for co-located temperature extremes in the Northern Hemisphere on (sub-)daily time scales. Geophys. Res. Lett. 39, L12807 (2012).

    Article  Google Scholar 

  12. Bieli, M., Pfahl, S. & Wernli, H. A Lagrangian investigation of hot and cold temperature extremes in Europe. Q. J. R. Meteorol. Soc. 141, 98–108 (2015).

    Article  Google Scholar 

  13. Loikith, P. C. & Broccoli, A. J. Characteristics of observed atmospheric circulation patterns associated with temperature extremes over North America. J. Clim. 25, 7266–7281 (2012).

    Article  Google Scholar 

  14. Trenberth, K. E. & Stepaniak, D. P. Covariability of poleward atmospheric energy transports on seasonal and interannual timescales. J. Clim. 16, 3691–3705 (2003).

    Article  Google Scholar 

  15. Schneider, T. The general circulation of the atmosphere. Annu. Rev. Earth Planet. Sci. 34, 655–688 (2006).

    Article  Google Scholar 

  16. Bony, S. et al. Clouds, circulation and climate sensitivity. Nat. Geosci. 8, 261–268 (2015).

    Article  Google Scholar 

  17. Grotjahn, R. in Encyclopedia of Atmospheric Sciences (eds Holton, J. R., Pyle, J. & Curry, J. A.) 179–188 (Academic, 2003).

    Book  Google Scholar 

  18. Eady, E. Long waves and cyclone waves. Tellus 1, 33–52 (1949).

    Article  Google Scholar 

  19. Hoskins, B. J. & Ambrizzi, T. Rossby wave propagation on a realistic longitudinally varying flow. J. Atmos. Sci. 50, 1661–1671 (1993).

    Article  Google Scholar 

  20. Sanders, F. Analytic solutions of the non-linear omega and vorticity equation for a structurally simple model of disturbances in the baroclinic westerlies. Mon. Weath. Rev. 99, 393–407 (1971).

    Article  Google Scholar 

  21. Hoskins, B. J., James, I. N. & White, G. H. The shape, propagation and mean-flow interaction of large-scale weather systems. J. Atmos. Sci. 40, 1595–1612 (1983).

    Article  Google Scholar 

  22. Edmon, H. J., Hoskins, B. J. & McIntyre, M. E. Eliassen–Palm cross sections for the troposphere. J. Atmos. Sci. 37, 2600–2616 (1980).

    Article  Google Scholar 

  23. Vallis, G. K., Gerber, E. P., Kushner, P. J. & Cash, B. A. A mechanism and simple dynamical model of the North Atlantic Oscillation and annular modes. J. Atmos. Sci. 61, 264–280 (2004).

    Article  Google Scholar 

  24. Davies, H. C., Schär, C. & Wernli, H. The palette of fronts and cyclones within a baroclinic wave development. J. Atmos. Sci. 48, 1666–1689 (1991).

    Article  Google Scholar 

  25. Kushner, P. J & Held, I. M. A test using atmospheric data, of a method for estimating oceanic eddy diffusivity. Geophys. Res. Lett. 47, 4213–4216 (1998).

    Article  Google Scholar 

  26. Hoskins, B. J. & Valdes, P. J. On the existence of storm tracks. J. Atmos. Sci. 47, 1854–1864 (1990).

    Article  Google Scholar 

  27. Shaw, T. A. On the role of planetary-scale waves in the abrupt seasonal transition of the Northern Hemisphere general circulation. J. Atmos. Sci. 71, 1724–1746 (2014).

    Article  Google Scholar 

  28. Lindzen, R. S. & Hou, A. V. Hadley circulations for zonally averaged heating centered off the Equator. J. Atmos. Sci. 45, 2416–2427 (1988).

    Article  Google Scholar 

  29. Son, S.-W. & Lee, S. The response of westerly jets to thermal driving in a primitive equation model. J. Atmos. Sci. 62, 3741–3757 (2005).

    Article  Google Scholar 

  30. Brayshaw, D. J., Hoskins, B. & Blackburn, M. The storm-track response to idealized SST perturbations in an aquaplanet GCM. J. Atmos. Sci. 65, 2842–2860 (2008).

    Article  Google Scholar 

  31. Li, C. & Wettstein, J. J. Thermally driven and eddy-driven jet variability in reanalysis. J. Clim. 25, 1587–1596 (2012).

    Article  Google Scholar 

  32. Nakamura, H., Sampe, T., Goto, A., Ohfuchi, W. & Xie, S.-P. On the importance of midlatitude oceanic frontal zones for the mean state and dominant variability in the tropospheric circulation. Geophys. Res. Lett. 35, L15709 (2008).

    Article  Google Scholar 

  33. Czaja, A. & Blunt, N. A new mechanism for ocean–atmosphere coupling in midlatitudes. Q. J. R. Meteorol. Soc. 137, 1095–1101 (2011).

    Article  Google Scholar 

  34. Kaspi, Y. & Schneider, T. The role of stationary eddies in shaping midlatitude storm tracks. J. Atmos. Sci. 70, 2596–2613 (2013).

    Article  Google Scholar 

  35. Held, I., Ting, M. & Wang, H. Northern winter stationary waves: theory and modeling. J. Clim. 15, 2125–2144 (2002).

    Article  Google Scholar 

  36. Shaw, T. A., Perlwitz, J. & Weiner, O. Troposphere–stratosphere coupling: links to North Atlantic weather and climate, including their representation in CMIP5 models. J. Geophys. Res.-Atmos. 119, 5864–5880 (2014).

    Article  Google Scholar 

  37. Hartmann, D. L. The atmospheric general circulation and its variability. J. Meteorol. Soc. Jpn 85, 123–143 (2007).

    Article  Google Scholar 

  38. Thompson, D. W. & Barnes, E. A. Periodic variability in the large-scale Southern Hemisphere atmospheric circulation. Science 343, 641–645 (2014).

    Article  Google Scholar 

  39. Ambaum, M. H. & Novak, L. A nonlinear oscillator describing storm track variability. Q. J. R. Meteorol. Soc. 140, 2680–2684 (2014).

    Article  Google Scholar 

  40. Thompson, D. W. J. et al. Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nature Geosci. 4, 741–749 (2011).

    Article  Google Scholar 

  41. Kidston, J. et al. Stratospheric influence on tropospheric jet streams, storm tracks and surface weather. Nature Geosci. 8, 433–440 (2015).

    Article  Google Scholar 

  42. Palmer, T. N. & Mansfield, D. A. Response of two atmospheric general circulation models to sea-surface temperature anomalies in the tropical East and West Pacific. Nature 310, 483–485 (1984).

    Article  Google Scholar 

  43. Cassou, C. Intraseasonal interaction between the Madden–Julian Oscillation and the North Atlantic Oscillation. Nature 455, 523–527 (2008).

    Article  Google Scholar 

  44. Baggett, C. & Lee, S. Arctic warming induced by tropically forced tapping of available potential energy and the role of the planetary-scale waves. J. Atmos. Sci. 72, 1562–1568 (2015).

    Article  Google Scholar 

  45. Drouard, M., Rivière, G. & Arbogast, P. The link between the North Pacific climate variability and the North Atlantic Oscillation via downstream propagation of synoptic waves. J. Clim. 28, 3957–3976 (2015).

    Article  Google Scholar 

  46. Barnes, E. A. & Screen, J. A. The impact of Arctic warming on the midlatitude jet-stream: Can it? Has it? Will it? Wiley Interdiscip. Rev. Clim. Change 6, 277–286 (2015).

    Article  Google Scholar 

  47. Merz, N., Raible, C. C. & Woollings, T. North Atlantic eddy-driven jet in interglacial and glacial winter climates. J. Clim. 28, 3977–3997 (2015).

    Article  Google Scholar 

  48. Lee, S. & Feldstein, S. B. Detecting ozone- and greenhouse gas-driven wind trends with observational data. Science 339, 563–567 (2013).

    Article  Google Scholar 

  49. Grise, K. M., Son, S.-W., Correa, G. J. P. & Polvani, L. M. The response of extratropical cyclones in the Southern Hemisphere to stratospheric ozone depletion in the 20th century. Atmos. Sci. Lett. 15, 29–36 (2014).

    Article  Google Scholar 

  50. Gerber, E. P. & Son, S.-W. Quantifying the summertime response of the austral jet stream and Hadley cell to stratospheric ozone and greenhouse gases. J. Clim. 27, 5538–5559 (2014).

    Article  Google Scholar 

  51. Vallis, G. K., Zurita-Gotor, P., Cairns, C. & Kidston, J. Response of the large-scale structure of the atmosphere to global warming. Q. J. R. Meteorol. Soc. 141, 1479–1501 (2014).

    Article  Google Scholar 

  52. Butler, A. H., Thompson, D. W. J. & Heikes, R. The steady-state atmospheric circulation response to climate change-like thermal forcings in a simple general circulation model. J. Clim. 23, 3474–3496 (2010).

    Article  Google Scholar 

  53. Mbengue, C. & Schneider, T. Storm track shifts under climate change: what can be learned from large-scale dry dynamics. J. Clim. 26, 9923–9930 (2014).

    Article  Google Scholar 

  54. Lu, J., Sun, L., Wu, Y. & Chen, G. The role of subtropical irreversible PV mixing in the zonal mean circulation response to global-warming like thermal forcing. J. Clim. 27, 2297–2316 (2014).

    Article  Google Scholar 

  55. Harvey, B. J., Shaffrey, L. C. & Woollings, T. J. Deconstructing the climate change response of the Northern Hemisphere wintertime storm tracks. Clim. Dynam. 45, 2847–2860 (2015).

    Article  Google Scholar 

  56. Deser, C., Tomas, R. A. & Sun, L. The role of ocean–atmosphere coupling in the zonal-mean atmospheric response to Arctic sea ice loss. J. Clim. 28, 2168–2186 (2015).

    Article  Google Scholar 

  57. Held, I. M. & Soden, B. J. Robust responses of the hydrological cycle to global warming. J. Clim. 19, 5686–5699 (2006).

    Article  Google Scholar 

  58. Hwang, Y.-T. & Frierson, D. M. W. Corrigendum to Held and Soden (2006). J. Clim. 24, 1569–1560 (2011).

    Google Scholar 

  59. O'Gorman, P. A. Understanding the varied response of the extratropical storm tracks to climate change. Proc. Natl Acad. Sci. USA 107, 19176–19180 (2010).

    Article  Google Scholar 

  60. Shaw, T. A. & Voigt, A. Tug of war on the summertime circulation between radiative forcing and sea surface warming. Nature Geosci. 8, 560–566 (2015).

    Article  Google Scholar 

  61. Simpson, I. R., Shaw, T. A & Seager, R. A diagnosis of the seasonally and longitudinally varying midlatitude circulation response to global warming. J. Atmos. Sci. 71, 2489–2515 (2014).

    Article  Google Scholar 

  62. Chang, E. K. M., Guo, Y. & Xia, X. CMIP5 multimodel ensemble projection of storm track change under global warming. J. Geophys. Res.-Atmos. 117, D23118 (2012).

    Google Scholar 

  63. Chang, E. K. M., Zheng, C, Lanigan, P., Yau, M. & Neelin, J. D. Significant modulation of variability and projected change in California winter precipitation by extratropical cyclone activity. Geophys. Res. Lett. 42, 5983–5991 (2015).

    Article  Google Scholar 

  64. Zappa, G., Shaffrey, L. C., Hodges, K. I., Sansom, P. G. & Stephenson, D. B. A multimodel assessment of future projections of the North Atlantic and European extratropical cyclones in the CMIP5 climate models. J. Clim. 26, 5846–5862 (2013).

    Article  Google Scholar 

  65. Hoskins, B. J. & Woolings, T. Persistent extratropical regimes and climate extremes. Curr. Clim. Change Rep. 1, 115–124 (2015).

    Article  Google Scholar 

  66. Woollings, T. Dynamical influences on European climate: an uncertain future. Phil. Trans. R. Soc. A 368, 3733–3756 (2010).

    Article  Google Scholar 

  67. Pfahl, S., O'Gorman, P. A. & Singh, M. S. Extratropical cyclones in idealized simulations of changed climates. J. Clim. 28, 9373–9392 (2015).

    Article  Google Scholar 

  68. Christensen, J. H. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Ch. 14 (IPCC, Cambridge Univ. Press, 2014).

    Google Scholar 

  69. Willison, J., Robinson, W. A. & Lackmann, G. M. North Atlantic storm-track sensitivity to warming increases with model resolution. J. Clim. 28, 4513–4524 (2015).

    Article  Google Scholar 

  70. Emori, S. & Brown, S. J. Dynamic and thermodynamic changes in mean and extreme precipitation under changed climate. Geophys. Res. Lett. 32, L17706 (2005).

    Article  Google Scholar 

  71. O'Gorman, P. A. & Schneider, T. The physical basis for increases in precipitation extremes in simulations of 21st-century climate change. Proc. Natl Acad. Sci. USA 106, 14773–14777 (2009).

    Article  Google Scholar 

  72. Lu, J. et al. The robust dynamical contribution to precipitation extremes in idealized warming simulations across model resolutions. Geophys. Res. Lett. 41, 2971–2978 (2014).

    Article  Google Scholar 

  73. Bindoff, N. L. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Ch. 10.6 (IPCC, Cambridge Univ. Press, 2014).

    Google Scholar 

  74. Schneider, T., Bischoff, T. & Plotka, H. Physics of changes in synoptic midlatitude temperature variability. J. Clim. 28, 2312–2331 (2015).

    Article  Google Scholar 

  75. Gastineau, G. & Soden, B. J. Model projected changes of extreme wind events in response to global warming. Geophys. Res. Lett. 36, L10810 (2009).

    Article  Google Scholar 

  76. Deser, C., Phillips, A., Bourdette, V. & Teng, H. Uncertainty in climate change projections: the role of internal variability. Clim. Dynam. 38, 527–546 (2012).

    Article  Google Scholar 

  77. Collins, M. et al. Quantifying future climate change. Nature Clim. Change 2, 403–409 (2012).

    Article  Google Scholar 

  78. Booth, J. F., Wang, S. & Polvani, L. M. Midlatitude storms in a moister world: lessons from idealized baroclinic life cycle experiments. Clim. Dynam. 41, 787–802 (2013).

    Article  Google Scholar 

  79. O'Gorman, P. A. The effective static stability experienced by eddies in a moist atmosphere. J. Atmos. Sci. 68, 75–90 (2011).

    Article  Google Scholar 

  80. Schneider, T., O'Gorman, P. A. & Levine, X. J. Water vapor and the dynamics of climate changes. Rev. Geophys. 48, RG3001 (2010).

    Article  Google Scholar 

  81. Houze, R. A. Jr Cloud Dynamics (Academic, 2014).

  82. Field, P. R. & Wood, R. Precipitation and cloud structure in midlatitude cyclones. J. Clim. 20, 233–254 (2007).

    Article  Google Scholar 

  83. Allan, R. P. Combining satellite data and models to estimate cloud radiative effect at the surface and in the atmosphere. Meteorol. Appl. 18, 324–333 (2011).

    Article  Google Scholar 

  84. Slingo, A. & Slingo, J. M. The response of a general circulation model to cloud longwave radiative forcing. I: Introduction and initial experiments. Q. J. R. Meteorol. Soc. 114, 1027–1062 (1988).

    Article  Google Scholar 

  85. Li, Y., Thompson, D. W. & Bony, S. The influence of atmospheric cloud radiative effects on the large-scale atmospheric circulation. J. Clim. 28, 7263–7278 (2015).

    Article  Google Scholar 

  86. Ceppi, P. & Hartmann, D. L. Connections between clouds, radiation, and midlatitude dynamics: a review. Curr. Clim. Change Rep. 1, 94–102 (2015).

    Article  Google Scholar 

  87. Li, Y., Thompson, D. W., Huang, Y. & Zhang, M. Observed linkages between the Northern Annular Mode/North Atlantic Oscillation, cloud incidence, and cloud radiative forcing. Geophys. Res. Lett. 41, 1681–1688 (2014).

    Article  Google Scholar 

  88. Grise, K. M. & Polvani, L. M. Southern Hemisphere cloud-dynamics biases in CMIP5 models and their implications for climate projections. J. Clim. 27, 6074–6092 (2014).

    Article  Google Scholar 

  89. Shepherd, T. G. Atmospheric circulation as a source of uncertainty in climate change projections. Nature Geosci. 7, 703–708 (2014).

    Article  Google Scholar 

  90. Voigt, A. & Shaw, T. A. Circulation response to warming shaped by radiative changes of clouds and water vapour. Nature Geosci. 8, 102–106 (2015).

    Article  Google Scholar 

  91. Ceppi, P. & Hartmann, D. L. Clouds and the atmospheric circulation response to warming. J. Clim. 29, 783–799 (2016).

    Article  Google Scholar 

  92. Weatherald, R. T. & Manabe, S. Cloud feedback processes in a general circulation model. J. Atmos. Sci. 45, 1397–1416 (1988).

    Article  Google Scholar 

  93. Held, I. M. The gap between simulation and understanding in climate modeling. Bull. Am. Meteorol. Soc. 86, 1609–1614 (2005).

    Article  Google Scholar 

  94. Blackburn, M. & Hoskins, B. J. Context and aims of the aqua-planet experiment. J. Meteorol. Soc. Jpn 91A, 1–15 (2013).

    Article  Google Scholar 

  95. Philips, N. A. The general circulation of the atmosphere: a numerical experiment. Q. J. R. Meteorol. Soc. 82, 123–164 (1956).

    Article  Google Scholar 

  96. Held, I. M. & Suarez, M. J. A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models. Bull. Am. Meteorol. Soc. 75, 1825–1830 (1994).

    Article  Google Scholar 

  97. Frierson, D. M. W., Held, I. M. & Zurita-Gotor, P. A gray-radiation aquaplanet moist GCM. Part I: Static stability and eddy scale. J. Atmos. Sci. 63, 2548–2566 (2006).

    Article  Google Scholar 

  98. O'Gorman, P. A. & Schneider, T. The hydrological cycle over a wide range of climates simulated with an idealized GCM. J. Clim. 21, 3815–3832 (2008).

    Article  Google Scholar 

  99. Kinter, J. L. et al. Revolutionizing climate modeling with Project Athena. Bull. Am. Meteorol. Soc. 94, 231–245 (2013).

    Article  Google Scholar 

  100. Hanley, J. & Caballero, R. Objective identification and tracking of multicentre cyclones in the ERA-interim reanalysis datasat. Quart. J. R. Meteorol. Soc. 138, 612–625 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

T.A.S. and A.V. are supported by the David and Lucile Packard Foundation. T.A.S is supported by the Alfred P. Sloan Foundation. We acknowledge support from the National Science Foundation (T.A.S., AGS-1538944; P.A.O., AGS-1148594; E.A.B., AGS-1419818). The National Center for Atmospheric Research is also supported by the National Science Foundation. Y.T.H. is supported by the Ministry of Science and Technology of Taiwan (104-2111-M-002-005). C.I.G. is supported by Israel Science Foundation (1558/14). C.L. is supported by Research Council of Norway project jetSTREAM (231716). We thank participants of the World Climate Research Program's Stratosphere–troposphere processes and their Role in Climate Workshop on the Storm Tracks. We thank S. Pfahl for Fig. 2 and the reviewers whose comments helped to significantly improve the submitted manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Shaw.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaw, T., Baldwin, M., Barnes, E. et al. Storm track processes and the opposing influences of climate change. Nature Geosci 9, 656–664 (2016). https://doi.org/10.1038/ngeo2783

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2783

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing