Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Rockfall triggering by cyclic thermal stressing of exfoliation fractures

Abstract

Exfoliation of rock deteriorates cliffs through the formation and subsequent opening of fractures, which in turn can lead to potentially hazardous rockfalls. Although a number of mechanisms are known to trigger rockfalls, many rockfalls occur during periods when likely triggers such as precipitation, seismic activity and freezing conditions are absent. It has been suggested that these enigmatic rockfalls may occur due to solar heating of rock surfaces, which can cause outward expansion. Here we use data from 3.5 years of field monitoring of an exfoliating granite cliff in Yosemite National Park in California, USA, to assess the magnitude and temporal pattern of thermally induced rock deformation. From a thermodynamic analysis, we find that daily, seasonal and annual temperature variations are sufficient to drive cyclic and cumulative opening of fractures. Application of fracture theory suggests that these changes can lead to further fracture propagation and the consequent detachment of rock. Our data indicate that the warmest times of the day and year are particularly conducive to triggering rockfalls, and that cyclic thermal forcing may enhance the efficacy of other, more typical rockfall triggers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Rockfall-prone cliffs and monitored exfoliation sheet in Yosemite Valley.
Figure 2: Daily deformation and temperature data.
Figure 3: Daily hysteresis loops of temperature–crack aperture (flake deformation) data.
Figure 4: Maximum monthly crack aperture time series data showing seasonal and annual deformation patterns.
Figure 5: Exfoliation sheet geometry and fracture model.

Similar content being viewed by others

References

  1. Hungr, O., Evans, S. & Hazzard, J. Magnitude and frequency of rockfalls and rock slides along the main transportation corridors of south-western British Columbia. Can. Geotech. J. 36, 224–238 (1999).

    Article  Google Scholar 

  2. Chau, K. T., Wong, R., Liu, J. & Lee, C. Rockfall hazard analysis for Hong Kong based on rockfall inventory. Rock Mech. Rock Eng. 36, 383–408 (2003).

    Article  Google Scholar 

  3. Rosser, N. J., Lim, M., Petley, D. N., Dunning, S. A. & Allison, R. J. Patterns of precursory rockfall prior to slope failure. J. Geophys. Res. 112, F04014 (2007).

    Article  Google Scholar 

  4. Oppikofer, T., Jaboyedoff, M. & Keusen, H.-R. Collapse at the eastern Eiger flank in the Swiss Alps. Nature Geosci. 1, 531–535 (2008).

    Article  Google Scholar 

  5. Ward, D. J., Anderson, R. S. & Haeussler, P. J. Scaling the Teflon peaks: rock type and the generation of extreme relief in the glaciated western Alaska Range. J. Geophys. Res. 117, F01031 (2012).

    Article  Google Scholar 

  6. Wieczorek, G. F. & Jäger, S. Triggering mechanisms and depositional rates of postglacial slope-movement processes in the Yosemite Valley, California. Geomorphology 15, 17–31 (1996).

    Article  Google Scholar 

  7. Krautblatter, M., Moser, M., Schrott, L., Wolf, J. & Morche, D. Significance of rockfall magnitude and carbonate dissolution for rock slope erosion and geomorphic work on Alpine limestone cliffs (Reintal, German Alps). Geomorphology 167–168, 21–34 (2012).

    Article  Google Scholar 

  8. Moore, J. R., Sanders, J. W., Dietrich, W. E. & Glaser, S. D. Influence of rock mass strength on the erosion rate of alpine cliffs. Earth Surf. Process. Landf. 34, 1339–1352 (2009).

    Article  Google Scholar 

  9. Gilbert, G. K. Domes and dome structures of the High Sierra. Bull. Geol. Soc. Am. 15, 29–36 (1904).

    Article  Google Scholar 

  10. Matthes, F. E. Geologic History of the Yosemite Valley (US Geological Survey Professional Paper 160, US Geological Survey, 1930).

    Book  Google Scholar 

  11. Jahns, R. H. Sheet structure in granites: its origin and use as a measure of glacial erosion in New England. J. Geol. 51, 71–98 (1943).

    Article  Google Scholar 

  12. Twidale, C. R. On the origin of sheet jointing. Rock Mech. 5, 163–187 (1973).

    Article  Google Scholar 

  13. Holzhausen, G. R. Origin of sheet structure. 1. Morphology and boundary conditions. Eng. Geol. 27, 225–278 (1989).

    Article  Google Scholar 

  14. Bahat, D., Grossenbacher, K. & Karasaki, K. Mechanism of exfoliation joint formation in granitic rocks, Yosemite National Park. J. Struct. Geol. 21, 85–96 (1999).

    Article  Google Scholar 

  15. Ziegler, M., Loew, S. & Moore, J. R. Distribution and inferred age of exfoliation joints in the Aar Granite of the central Swiss Alps and relationship to Quaternary landscape evolution. Geomorphology 201, 344–362 (2013).

    Article  Google Scholar 

  16. Martel, S. J. Effect of topographic curvature on near-surface stresses and application to sheeting joints. Geophys. Res. Lett. 33, L01308 (2006).

    Article  Google Scholar 

  17. Martel, S. J. Mechanics of curved surfaces, with application to surface-parallel cracks. Geophys. Res. Lett. 38, L20303 (2011).

    Article  Google Scholar 

  18. Higgins, J. D. & Andrew, R. D. in Rockfall Characterization and Control (eds Turner, A. K. & Schuster, R. L.) (Transportation Research Board, 2012).

    Google Scholar 

  19. Blackwelder, E. The insolation hypothesis of rock weathering. Am. J. Sci. 26, 97–113 (1933).

    Article  Google Scholar 

  20. Griggs, D. T. The factor of fatigue in rock exfoliation. Geology 44, 783–796 (1936).

    Article  Google Scholar 

  21. Siegesmund, S., Ullemeyer, K., Weiss, T. & Tschegg, E. K. Physical weathering of marbles caused by anisotropic thermal expansion. Int. J. Earth Sci. 89, 170–182 (2000).

    Article  Google Scholar 

  22. Siegesmund, S., Mosch, S., Scheffzük, Ch. & Nikoayev, D. I. The bowing potential of granitic rocks: rock fabrics, thermal properties and residual strain. Environ. Geol. 55, 1437–1448 (2008).

    Article  Google Scholar 

  23. Chau, K. T. & Shao, J. F. Subcritical crack growth of edge and center cracks in façade rock panels subject to periodic surface temperature variations. Int. J. Solids Struct. 43, 807–827 (2006).

    Article  Google Scholar 

  24. McFadden, L. D., Eppes, M. C., Gillespie, A. R. & Hallet, B. Physical weathering in arid landscapes due to diurnal variation in the direction of solar heating. GSA Bull. 117, 161–173 (2005).

    Article  Google Scholar 

  25. Eppes, M. C., McFadden, L., Wegmann, K. & Scuderi, L. Cracks in desert pavement rocks: further insights into mechanical weathering by directional solar heating. Geomorphology 123, 97–108 (2010).

    Article  Google Scholar 

  26. Eppes, M. C., Willis, A., Molaro, J., Abernathy, S. & Zhou, B. Cracks in Martian boulders exhibit preferred orientations that point to solar-induced thermal stress. Nature Commun. 6, 6712 (2015).

    Article  Google Scholar 

  27. Ishikawa, M., Kurashige, Y. & Hirakawa, K. Analysis of crack movements observed in an alpine bedrock cliff. Earth Surf. Process. Landf. 29, 883–891 (2004).

    Article  Google Scholar 

  28. Gunzburger, Y., Merrien-Soukatchoff, V. & Guglielmi, Y. Influence of daily surface temperature fluctuations on rockslope stability: case study of the Rochers de Valabres slope (France). Int. J. Rock Mech. Min. Sci. 42, 331–349 (2005).

    Article  Google Scholar 

  29. Vlcko, J. et al. Rock displacement and thermal expansion study at historic heritage sites in Slovakia. Environ. Geol. 58, 1727–1740 (2009).

    Article  Google Scholar 

  30. Gischig, V. S., Moore, J. R., Evans, K. F., Amann, F. & Loew, S. Thermomechanical forcing of deep rock slope deformation: 1. Conceptual study of a simplified slope. J. Geophys. Res. 116, F04010 (2011).

    Google Scholar 

  31. Vargas, E. A. Jr, Velloso, R. Q., Chávez, L. E., Gusmão, L. & Amaral, C. P. On the effect of thermally induced stresses in failures of some rock slopes in Rio de Janeiro, Brazil. Rock Mech. Rock Eng. 46, 123–134 (2012).

    Article  Google Scholar 

  32. Lawn, B. Fracture of Brittle Solids 2nd edn (Cambridge Univ. Press, 1993).

    Book  Google Scholar 

  33. Tipler, P. Physics for Scientists and Engineers 4th edn (W. H. Freeman & Co., 1999).

    Google Scholar 

  34. Carslaw, H. S. & Jaeger, J. C. Conduction of Heat in Solids (Oxford Univ. Press, 1946).

    Google Scholar 

  35. Clark, S. P. Jr in Handbook of Physical Constants (ed. Clark, S. P. Jr) Geol. Soc. America Memoir 97, 459–482 (Geological Society of America, 1966).

    Book  Google Scholar 

  36. Usmani, A. S., Rotter, J. M., Lamont, S., Sanad, A. M. & Gillie, M. Fundamental principles of structural behaviour under thermal effects. Fire Safety J. 36, 721–744 (2001).

    Article  Google Scholar 

  37. Skinner, B. J. in Handbook of Physical Constants (ed. Clark, S. P. Jr) Geol. Soc. America Memoir 97, 75–96 (Geological Society of America, 1966).

    Book  Google Scholar 

  38. Stock, G. M., Martel, S. J., Collins, B. D. & Harp, E. Progressive failure of sheeted rock slopes: the 2009–2010 Rhombus Wall rock falls in Yosemite Valley, California, USA. Earth Surf. Process. Landf. 37, 546–561 (2012).

    Article  Google Scholar 

  39. Segall, P. & Pollard, D. D. Joint formation in granitic rock of the Sierra Nevada. Geol. Soc. Am. Bull. 94, 563–575 (1983).

    Article  Google Scholar 

  40. Celestino, T. B., Bortolucci, A. A. & Nobrega, C. A. Determination of rock fracture toughness under creep and fatigue. Rock Mech. Proc. 35th US Symp. 147–152 (Balkema, 1995).

  41. Nasseri, M. H. B., Tatone, B. S. A., Grasselli, G. & Young, R. P. Fracture toughness and fracture roughness interrelationship in thermally treated Westerly granite. Pure Appl. Geophys. 166, 801–822 (2009).

    Article  Google Scholar 

  42. Atkinson, B. K. & Meredith, P. G. in Fracture Mechanics of Rock (ed. Atkinson, B. K.) 111–166 (Academic, 1987).

    Book  Google Scholar 

  43. Bakun-Mazor, D., Hatzor, Y. H., Glaser, S. D. & Santamarina, J. C. Thermally vs. seismically induced block displacements in Masada rock slopes. Int. J. Rock Mech. Min. Sci. 61, 196–211 (2013).

    Article  Google Scholar 

  44. Hasler, A., Gruber, S. & Beutel, J. Kinematics of steep bedrock permafrost. J. Geophys. Res. 117, F01016 (2012).

    Article  Google Scholar 

  45. Stock, G. M. et al. Historical Rock Falls in Yosemite National Park, California (1857–2011) (US Geological Survey Data Series 746, 2013); http://pubs.usgs.gov/ds/746

  46. Abellán, A., Jaboyedoff, M., Oppikofer, T. & Vilaplana, J. M. Detection of millimetric deformation using a terrestrial laser scanner: experiment and application to a rockfall event. Nat. Hazards Earth Syst. Sci. 9, 365–372 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the USGS Landslide Hazards Program and the US National Park Service, Yosemite National Park. We thank B. Murchey (USGS) for supporting the efforts to initiate this work. F. Sandrone, L. Gastaldo, B. Matasci and M. Jaboyedoff (École Polytechnique Fédérale de Lausanne, Laboratory for Rock Mechanics and the Université de Lausanne, Institute of Earth Sciences Terre, Lausanne, Switzerland) performed laboratory testing of rock samples for rock mechanics characterization. We appreciate discussions with R. S. Anderson, M. E. Reid, S. J. Martel and J. R. Moore, who provided helpful suggestions and encouragement throughout the project. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the US Government.

Author information

Authors and Affiliations

Authors

Contributions

G.M.S. conceived the project. B.D.C. designed the experiment and processed the data. B.D.C. and G.M.S. jointly collected and interpreted the data. B.D.C. developed the analyses and wrote the paper with input from G.M.S.

Corresponding author

Correspondence to Brian D. Collins.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 259 kb)

Supplementary Information

Supplementary Information (XLSX 105819 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Collins, B., Stock, G. Rockfall triggering by cyclic thermal stressing of exfoliation fractures. Nature Geosci 9, 395–400 (2016). https://doi.org/10.1038/ngeo2686

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2686

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing