Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Enhanced Atlantic sea-level rise relative to the Pacific under high carbon emission rates

Abstract

Thermal expansion of the ocean in response to warming is an important component of historical sea-level rise1. Observational studies show that the Atlantic and Southern oceans are warming faster than the Pacific Ocean2,3,4,5. Here we present simulations using a numerical atmospheric-ocean general circulation model with an interactive carbon cycle to evaluate the impact of carbon emission rates, ranging from 2 to 25 GtC yr−1, on basin-scale ocean heat uptake and sea level. For simulations with emission rates greater than 5 GtC yr−1, sea-level rise is larger in the Atlantic than Pacific Ocean on centennial timescales. This basin-scale asymmetry is related to the shorter flushing timescales and weakening of the overturning circulation in the Atlantic. These factors lead to warmer Atlantic interior waters and greater thermal expansion. In contrast, low emission rates of 2 and 3 GtC yr−1 will cause relatively larger sea-level rise in the Pacific on millennial timescales. For a given level of cumulative emissions, sea-level rise is largest at low emission rates. We conclude that Atlantic coastal areas may be particularly vulnerable to near-future sea-level rise from present-day high greenhouse gas emission rates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ensemble mean Atlantic Meridional Overturning Circulation (AMOC) averaged over model years 181–200.
Figure 2: Atlantic minus Pacific differences in basin-average volume mean ocean temperature and dissolved inorganic carbon (DIC) concentration.
Figure 3: Basin area-average differences in SLR as a function of emission rate.
Figure 4: Spatial patterns of SLR under varying emission rates.

Similar content being viewed by others

References

  1. Church, J. A. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. et al.) 1137–1216 (IPCC, Cambridge Univ. Press, 2013).

    Google Scholar 

  2. Carton, J. A. & Santorelli, A. Global decadal upper-ocean heat content as viewed in nine analyses. J. Clim. 21, 6015–6035 (2008).

    Article  Google Scholar 

  3. Purkey, S. G. & Johnson, G. C. Warming of global abyssal and deep southern ocean waters between the 1990s and 2000s: contributions to global heat and sea level rise budgets. J. Clim. 23, 6336–6351 (2010).

    Article  Google Scholar 

  4. Levitus, S. et al. World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010. Geophys. Res. Lett. 39, L10603 (2012).

    Article  Google Scholar 

  5. Robson, J., Sutton, R., Lohmann, K., Smith, D. & Palmer, M. D. Causes of the rapid warming of the North Atlantic Ocean in the mid-1990s. J. Clim. 25, 4116–4134 (2012).

    Article  Google Scholar 

  6. Solomon, S., Plattner, G.-K., Knutti, R. & Friedlingstein, P. Irreversible climate change due to carbon dioxide emissions. Proc. Natl Acad. Sci. USA 106, 1704–1709 (2009).

    Article  Google Scholar 

  7. Ciais, P. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. et al.) 465–570 (IPCC, Cambridge Univ. Press, 2013).

    Google Scholar 

  8. Rhein, M. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. et al.) 255–316 (IPCC, Cambridge Univ. Press, 2013).

    Google Scholar 

  9. Chen, X. & Tung, K.-K. Varying planetary heat sink led to global-warming slowdown and acceleration. Science 345, 897–903 (2014).

    Article  Google Scholar 

  10. Meehl, G. A., Arblaster, J. M., Fasullo, J. T., Hu, A. & Trenberth, K. E. Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods. Nature Clim. Change 1, 360–364 (2011).

    Article  Google Scholar 

  11. Krasting, J. P., Dunne, J. P., Shevliakova, E. & Stouffer, R. J. Trajectory sensitivity of the transient climate response to cumulative carbon emissions. Geophys. Res. Lett. 41, 2520–2527 (2014).

    Article  Google Scholar 

  12. Thiele, G. & Sarmiento, J. L. Tracer dating and ocean ventilation. J. Geophys. Res. 95, 9377–9391 (1990).

    Article  Google Scholar 

  13. Stouffer, R. J. & Manabe, S. Response of a coupled ocean–atmosphere model to increasing atmospheric carbon dioxide: sensitivity to the rate of increase. J. Clim. 12, 2224–2237 (1999).

    Article  Google Scholar 

  14. Myhre, G., Highwood, E. J., Shine, K. P. & Stordal, F. New estimates of radiative forcing due to well mixed greenhouse gases. Geophys. Res. Lett. 25, 2715–2718 (1998).

    Article  Google Scholar 

  15. Matthews, H. D., Gillett, N. P., Stott, P. A. & Zickfeld, K. The proportionality of global warming to cumulative carbon emissions. Nature 459, 829–832 (2009).

    Article  Google Scholar 

  16. Stouffer, R. J. Time scales of climate response. J. Clim. 17, 209–217 (2004).

    Article  Google Scholar 

  17. Griffies, S. M. et al. An assessment of global and regional sea level for years 1993–2007 in a suite of interannual CORE-II simulations. Ocean Model. 78, 35–89 (2014).

    Article  Google Scholar 

  18. Manabe, S. & Stouffer, R. J. Simulation of abrupt climate change induced by freshwater input to the North Atlantic Ocean. Nature 378, 165–167 (1995).

    Article  Google Scholar 

  19. Yin, J. Century to multi-century sea level rise projections from CMIP5 models. Geophys. Res. Lett. 39, L17709 (2012).

    Google Scholar 

  20. Bilbao, R. F., Gregory, J. & Bouttes, N. Analysis of the regional pattern of sea level change due to ocean dynamics and density change for 1993–2099 in observations and CMIP5 AOGCMs. Clim. Dynam. 45, 2647–2666 (2015).

    Article  Google Scholar 

  21. Levermann, A., Griesel, A., Hofmann, M., Montoya, M. & Rahmstorf, S. Dynamic sea level changes following changes in the thermohaline circulation. Clim. Dynam. 24, 347–354 (2005).

    Article  Google Scholar 

  22. Kuhlbrodt, T. & Gregory, J. M. Ocean heat uptake and its consequences for the magnitude of sea level rise and climate change. Geophys. Res. Lett. 39, L18608 (2012).

    Article  Google Scholar 

  23. Horton, R. et al. in Climate Change Impacts in the United States: The Third National Climate Assessment (eds Melillo, J. M., Richmond, T. T. & Yohe, G. W.) Ch. 16 (US Global Change Research Program, 2014).

    Google Scholar 

  24. Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2011).

    Article  Google Scholar 

  25. Delworth, T. L. et al. GFDL’s CM2 global coupled climate models. Part I: Formulation and simulation characteristics. J. Clim. 19, 643–674 (2006).

    Article  Google Scholar 

  26. Shevliakova, E. et al. Carbon cycling under 300 years of land use change: importance of the secondary vegetation sink. Glob. Biogeochem. Cycles 23, GB2022 (2009).

    Article  Google Scholar 

  27. Dunne, J. P. et al. GFDL’s ESM2 global coupled climate–carbon earth system models. Part I: Physical formulation and baseline simulation characteristics. J. Clim. 25, 6646–6665 (2012).

    Article  Google Scholar 

  28. Johns, W. E. et al. Continuous, array-based estimates of Atlantic Ocean heat transport at 26.5° N. J. Clim. 24, 2429–2449 (2010).

    Article  Google Scholar 

  29. Dunne, J. P. et al. GFDL’s ESM2 global coupled climate–carbon earth system models. Part II: Carbon system formulation and baseline simulation characteristics. J. Clim. 26, 2247–2267 (2013).

    Article  Google Scholar 

  30. Vuuren, D. et al. The representative concentration pathways: an overview. Climatic Change 109, 5–31 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

We thank A. Adcroft and K. Dixon for their comments and feedback on this study. We also thank C. Raphael for assistance in preparing the figures for this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

J.P.K. designed the study and conducted the experiments. J.P.K. and J.P.D. performed the analysis of the results. All authors contributed to the interpretation of the results and assisted in writing the manuscript.

Corresponding author

Correspondence to J. P. Krasting.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 905 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krasting, J., Dunne, J., Stouffer, R. et al. Enhanced Atlantic sea-level rise relative to the Pacific under high carbon emission rates. Nature Geosci 9, 210–214 (2016). https://doi.org/10.1038/ngeo2641

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2641

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing