Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Rapid mantle-driven uplift along the Angolan margin in the late Quaternary

Abstract

Mantle flow can cause the Earth’s surface to uplift and subside, but the rates and durations of these motions are, in general, poorly resolved due to the difficulties in making measurements of relatively small vertical movements (hundreds of metres) over sufficiently large distances (about 1,000 km). Here we examine the effect of mantle upwelling through a study of Quaternary uplift along the coast of Angola. Using both optically stimulated luminescence on sediment grains, and radiocarbon dating of fossil shells, we date a 25 m coastal terrace at about 45 thousand years old, when sea level was about 75 m lower than today, indicating a rapid uplift rate of 1.8–2.6 mm yr−1 that is an order of magnitude higher than previously obtained rates averaged over longer time periods. Automated extraction and correlation of coastal terrace remnants from digital topography uncovers a symmetrical uplift with diameter of more than 1,000 km. The wavelength and relatively short timescale of the uplift suggest that it is associated with a mantle process, possibly convective upwelling, and that the topography may be modulated by rapid short-lived pulses of mantle-derived uplift. Our study shows that stable continental regions far from the effects of glacial rebound may experience rapid vertical displacements of several millimetres per year.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Regional setting of the study sites.
Figure 2: OxCal age model using the Marine13 marine curve incorporating the eight OSL samples and two radiocarbon ages.
Figure 3: Uplift rates at Benguela.
Figure 4: Regional terrace correlations.

Similar content being viewed by others

References

  1. Vail, P. R. & Mitchum, R. M. Jr Global Cycles of Relative Changes of Sea Level from Seismic Stratigraphy: Resources, Comparative Structure, and Eustatic Changes in Sea Level Vol. 109, 469–472 (AAPG, 1979).

    Google Scholar 

  2. Lithgow-Bertelloni, C. & Silver, P. G. Dynamic topography, plate driving forces and the African superswell. Nature 395, 269–272 (1998).

    Article  Google Scholar 

  3. Burke, K. & Gunnell, Y. The African erosion surface. Geol. Soc. Am. Mem. 201, 1–66 (2008).

    Google Scholar 

  4. Nyblade, A. A. & Robinson, S. W. The African superswell. Geophys. Res. Lett. 21, 765–768 (1994).

    Article  Google Scholar 

  5. Gurnis, M., Mitrovica, J. X., Ritsema, J. & van Heijst, H. J. Constraining mantle density structure using geological evidence of surface uplift rates: the case of the African Superplume. Geochem. Geophys. Geosyst. 1, 7 (2000).

    Article  Google Scholar 

  6. Nyblade, A. A. & Sleep, N. H. Long lasting epeirogenic uplift from mantle plumes and the origin of the Southern African Plateau. Geochem. Geophys. Geosyst. 4, 1105 (2003).

    Article  Google Scholar 

  7. Al-Hajri, Y., White, N. & Fishwick, S. Scales of transient convective support beneath Africa. Geology 37, 883–886 (2009).

    Article  Google Scholar 

  8. Roberts, G. G. & White, N. Estimating uplift rate histories from river profiles using African examples. J. Geophys. Res. 115, B2 (2010).

    Google Scholar 

  9. Molnar, P., England, P. C. & Jones, C. H. Mantle dynamics, isostacy, and the support of high terrain. J. Geophys. Res. 120, 1932–1957 (2014).

    Article  Google Scholar 

  10. Giresse, P., Hoang, C.-T. & Kouyoumontzakis, G. Analysis of vertical movements deduced from a geochronological study of marine Pleistocene deposits, southern coast of Angola. J. Afr. Earth Sci. 2, 177–187 (1984).

    Google Scholar 

  11. Guiraud, M., Buta-Neto, A. & Quesne, D. Segmentation and differential post-rift uplift at the Angola margin as recorded by the transform-rifted Benguela and oblique-to-orthogonal-rifted Kwanza basins. Mar. Petrol. Geol. 27, 1040–1068 (2010).

    Article  Google Scholar 

  12. Karlstrom, K. E. et al. Mantle-driven dynamic uplift of the rocky mountains and Colorado plateau and its surface response: toward a unified hypothesis. Lithosphere 4, 3–22 (2012).

    Article  Google Scholar 

  13. Crow, R. et al. Steady incision of Grand Canyon at the million year timeframe: a case for mantle-driven differential uplift. Earth Planet. Sci. Lett. 397, 159–173 (2014).

    Article  Google Scholar 

  14. Isachsen, Y. W. Contemporary doming of the Adirondack Mountains: further evidence from releveling. Tectonophysics 71, 95–96 (1981).

    Article  Google Scholar 

  15. Hartley, R. A., Roberts, G. G., White, N. & Richardson, C. Transient convective uplift of an ancient buried landscape. Nat. Geosci. 4, 562–565 (2011).

    Article  Google Scholar 

  16. Soares de Carvalho, G. Alguna problemas dos terracos quaternaries de littoral de Angola. Bol. Serv. Geol. Min. Angola 2, 5–15 (1961).

    Google Scholar 

  17. Broecker, W. S. Preliminary evaluation of uranium series inequilibrium as a tool for absolute age measurement on marine carbonates. J. Geophys. Res. 68, 2817–2834 (1963).

    Article  Google Scholar 

  18. Giresse, P. in Sea-Level Changes (eds Tooley, M. J. & Shennan, I.) Ch. 8 (Institute of British Geographers, Special Publication Series, 1987).

    Google Scholar 

  19. Rhodes, E. J., Singarayer, J. S., Raynal, J. P., Westaway, K. E. & Sbihi-Alaoui, F. Z. New age estimates for the Palaeolithic assemblages and Pleistocene succession of Casablanca, Morocco. Quat. Sci. Rev. 25, 2569–2585 (2006).

    Article  Google Scholar 

  20. Jacobs, Z. Luminescence chronologies for coastal and marine sediments. Boreas 37, 508–535 (2008).

    Article  Google Scholar 

  21. Benedetti, M. M. et al. Late Pleistocene raised beaches of coastal Estremadura, central Portugal. Quat. Sci. Rev. 28, 3428–3447 (2009).

    Article  Google Scholar 

  22. Dewar, G., Reimer, P. J., Sealy, J. & Woodborne, S. Late-Holocene marine radiocarbon reservoir correction (Delta R) for the west coast of South Africa. Holocene 22, 1481–1489 (2012).

    Article  Google Scholar 

  23. Ramsey, C. B. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337–360 (2009).

    Article  Google Scholar 

  24. Waelbroeck, C. et al. Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records. Quat. Sci. Rev. 21, 295–305 (2002).

    Article  Google Scholar 

  25. Grant, K. M. et al. Sea-level variability over five glacial cycles. Nat. Commun. 5, 5076 (2014).

    Article  Google Scholar 

  26. De Boer, B., Lourens, L. J. & Van De Wal, R. S. Persistent 400,000-year variability of Antarctic ice volume and the carbon cycle is revealed throughout the Plio-Pleistocene. Nat. Commun. 5, 2999 (2014).

    Article  Google Scholar 

  27. Zachos, J. C., Dickens, G. R. & Zeebe, R. E. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451, 279–283 (2014).

    Article  Google Scholar 

  28. Hansen, J., Sato, M., Russell, G. & Kharecha, P. Climate sensitivity, sea level and atmospheric carbon dioxide. Phil. Trans. R. Soc. A 317, 20120294 (2013).

    Article  Google Scholar 

  29. Rudge, J. F., Roberts, G. G., White, N. J. & Richardson, C. N. Uplift histories of Africa and Australia from linear inverse modeling of drainage inventories. J. Geophys. Res. 120, 894–914 (2015).

    Article  Google Scholar 

  30. Watts, A. B., Rodger, M., Peirce, C., Greenroyd, C. J. & Hobbs, R. W. Seismic structure, gravity anomalies, and flexure of the Amazon continental margin, NE Brazil. J. Geophys. Res. 114, B7 (2009).

    Article  Google Scholar 

  31. van der Hilst, R., Widiyantoro, S. & Engdahl, R. Evidence for deep mantle circulation from global tomography. Nature 386, 578–584 (1997).

    Article  Google Scholar 

  32. Begg, G. C. et al. The lithospheric architecture of Africa: seismic tomography, mantle petrology, and tectonic evolution. Geosphere 5, 23–50 (2009).

    Article  Google Scholar 

  33. Li, A. & Burke, K. Upper mantle structure of southern Africa from Rayleigh wave tomography. J. Geophys. Res. 111, B10 (2006).

    Article  Google Scholar 

  34. Craig, T. J., Jackson, J. A., Priestley, K. & McKenzie, D. Earthquake distribution patterns in Africa: their relationship to variations in lithospheric and geological structure, and their rheological implications. Geophys. J. Int. 185, 403–434 (2011).

    Article  Google Scholar 

  35. McKenzie, D. The influence of dynamically supported topography on estimates of Te. Earth Planet. Sci. Lett. 295, 127–138 (2010).

    Article  Google Scholar 

  36. Jones, S. M., White, N. & Maclennan, J. V-shaped ridges around Iceland: implications for spatial and temporal patterns of mantle convection. Geochem. Geophys. Geosyst. 3, 1–23 (2002).

    Article  Google Scholar 

  37. Rudge, J. F., Champion, M. E. S., White, N., McKenzie, D. & Lovell, B. A plume model of transient diachronous uplift at the Earth’s surface. Earth Planet. Sci. Lett. 267, 146–160 (2008).

    Article  Google Scholar 

  38. Gilchrist, A. R. & Summerfield, M. A. Differential denudation and flexural isostasy in formation of rifted-margin upwarps. Nature 346, 739–742 (1990).

    Article  Google Scholar 

  39. Karner, G. D. et al. Distribution of crustal extension and regional basin architecture of the Albertine rift system, East Africa. Mar. Petrol. Geol. 17, 1131–1150 (2000).

    Article  Google Scholar 

  40. Reimer, P. J. et al. INTCAL and MARINE13 Radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 1869–1887 (2013).

    Article  Google Scholar 

  41. Friedman, G. M. Identification of carbonate minerals by staining methods. J. Sediment. Petrol. 29, 87–97 (1959).

    Google Scholar 

  42. Murray, A. S. & Wintle, A. G. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiat. Meas. 32, 57–73 (2000).

    Article  Google Scholar 

  43. Murray, A. S. & Wintle, A. G. The single aliquot regenerative dose protocol: potential for improvements in reliability. Radiat. Meas. 37, 377–381 (2003).

    Article  Google Scholar 

  44. Duller, G. A. T. Distinguishing quartz and feldspar in single grain luminescence measurements. Radiat. Meas. 37, 161–165 (2003).

    Article  Google Scholar 

  45. Ballarini, M., Wallinga, J., Wintle, A. G. & Bos, A. J. J. A modified SAR protocol for optical dating of individual grains from young quartz samples. Radiat. Meas. 42, 360–369 (2007).

    Article  Google Scholar 

  46. Wintle, A. G. & Murray, A. S. A review of quartz optically stimulated luminescence characteristics and their relevance in single-aliquot regeneration dating protocols. Radiat. Meas. 41, 369–391 (2006).

    Article  Google Scholar 

  47. Berger, G. W. & Chen, R. Error analysis and modelling of double saturating exponential dose response curves from SAR OSL dating. Ancient TL 29, 9–14 (2011).

    Google Scholar 

  48. Lowick, S. E., Preusser, F. & Wintle, A. G. Investigating quartz optically stimulated luminescence dose–response curves at high doses. Radiat. Meas. 45, 975–984 (2010).

    Article  Google Scholar 

  49. Timar-Gabor, A., Vasiliniuc, S., Vandenberghe, D. A. G., Cosma, C. & Wintle, A. G. Investigations into the reliability of SAR-OSL equivalent doses obtained for quartz samples displaying dose response curves with more than one component. Radiat. Meas. 47, 740–745 (2012).

    Article  Google Scholar 

  50. Lowick, S. E. & Preusser, F. Investigating age underestimation in the high dose region of optically stimulated luminescence using fine grain quartz. Quat. Geochronol. 6, 33–41 (2011).

    Article  Google Scholar 

  51. Galbraith, R. F., Roberts, R. G., Laslett, G. M., Yoshida, H. & Olley, J. M. Optical dating of single and multiple grains of quartz from Jinmium rock shelter, northern Australia, part 1, Experimental design and statistical models. Archaeometry 41, 339–364 (1999).

    Article  Google Scholar 

  52. Brock, F., Higham, T. F. G., Ditchfield, P. & Bronk Ramsey, C. Current pretreatment methods for AMS radiocarbon dating at the Oxford Radiocarbon Accelerator Unit (ORAU). Radiocarbon 52, 103–112 (2010).

    Article  Google Scholar 

  53. Bronk Ramsey, C., Higham, T. & Leach, P. Towards high-precision AMS: progress and limitations. Radiocarbon 46, 17–24 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

This project was funded by the Royal Society of London. The European Space Agency provided KOMPSAT2 imagery under project allocation C1P.6462. The use of SRTM global data was enabled by the OpenTopography Facility with support from the National Science Foundation under NSF Award Numbers 1226353 and 1225810. We thank A. Buta-Neto and C. Tunguno (Universidad Agostinho Neto) and P. Gomez (Benguela Museum) for help during fieldwork, the Head of the Department of Geology at Universidad Agostinho Neto for his support, and C. Laiginhas for organizing all fieldwork logistics.

Author information

Authors and Affiliations

Authors

Contributions

R.T.W. and A.B.W. conceived and designed the experiments; M.T. and R.T.W. performed the fieldwork and undertook all sample collection; J.-L.S. and M.T. performed the OSL sample analyses, and M.W.D. performed the radiocarbon calibrations and age modelling; R.L.K. constructed the method for automatic terrace extraction; B.K., R.L.K. and R.A.S. performed the regional terrace correlations; M.W.D., R.L.K., R.A.S., M.T. and R.T.W. co-wrote the paper.

Corresponding author

Correspondence to R. T. Walker.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2426 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Walker, R., Telfer, M., Kahle, R. et al. Rapid mantle-driven uplift along the Angolan margin in the late Quaternary. Nature Geosci 9, 909–914 (2016). https://doi.org/10.1038/ngeo2835

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2835

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing