Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Marine methane paradox explained by bacterial degradation of dissolved organic matter

Abstract

Biogenic methane is widely thought to be a product of archaeal methanogenesis, an anaerobic process that is inhibited or outcompeted by the presence of oxygen and sulfate1,2,3. Yet a large fraction of marine methane delivered to the atmosphere is produced in high-sulfate, fully oxygenated surface waters that have methane concentrations above atmospheric equilibrium values, an unexplained phenomenon referred to as the marine methane paradox4,5. Here we use nuclear magnetic resonance spectroscopy to show that polysaccharide esters of three phosphonic acids are important constituents of dissolved organic matter in seawater from the North Pacific. In seawater and pure culture incubations, bacterial degradation of these dissolved organic matter phosphonates in the presence of oxygen releases methane, ethylene and propylene gas. Moreover, we found that in mutants of a methane-producing marine bacterium, Pseudomonas stutzeri, disrupted in the C–P lyase phosphonate degradation pathway, methanogenesis was also disabled, indicating that the C–P lyase pathway can catalyse methane production from marine dissolved organic matter. Finally, the carbon stable isotope ratio of methane emitted during our incubations agrees well with anomalous isotopic characteristics of seawater methane. We estimate that daily cycling of only about 0.25% of the organic matter phosphonate inventory would support the entire atmospheric methane flux at our study site. We conclude that aerobic bacterial degradation of phosphonate esters in dissolved organic matter may explain the marine methane paradox.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of phosphorus in DOM by 31P NMR spectroscopy.
Figure 2: Hydrocarbon gas production from semi-labile DOM.
Figure 3: Production of methane and ethylene from semi-labile DOM phosphonates.

Similar content being viewed by others

References

  1. Thauer, R. K., Kaster, A.-K., Seedorf, H., Buckel, W. & Reiner, H. Methanogenic archaea: ecologically relevant differences in energy conservation. Nat. Rev. Microbiol. 6, 579–591 (2008).

    Google Scholar 

  2. Garcia, J.-L., Patel, B. K. & Ollivier, B. Taxonomic, phylogenetic and ecological diversity of methanogenic archaea. Anaerobe 6, 205–226 (2000).

    Article  Google Scholar 

  3. Liu, Y. & Whitman, W. B. Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann. NY Acad. Sci. 1125, 171–189 (2000).

    Article  Google Scholar 

  4. Reeburgh, W. S. Oceanic methane biogeochemistry. Chem. Rev. 107, 486–513 (2007).

    Article  Google Scholar 

  5. Kiene, R. P. Microbial Production and Consumption of Greenhouse Gases: Methane, Nitrogen Oxides, and Halomethanes (ASM, 1991).

    Google Scholar 

  6. Oremland, R. S. Methanogenic activity in plankton samples and fish intestines: a mechanism for in situ methanogenesis in oceanic surface waters. Limnol. Oceanogr. 24, 1136–1141 (1979).

    Article  Google Scholar 

  7. De Angelis, M. A. & Lee, C. Methane production during zooplankton grazing on marine phytoplankton. Limnol. Oceanogr. 39, 1298–1308 (1994).

    Article  Google Scholar 

  8. Ditchfield, A. K. et al. Identification of putative methylotrophic and hydrogenotrophic methanogens within sedimenting material and copepod faecal pellets. Aquat. Microbiol. Ecol. 67, 151–160 (2012).

    Article  Google Scholar 

  9. Ploug, H., Kuhl, M., Buchholz-Cleven, B. & Jorgensen, B. B. Anoxic aggregates-an ephemeral phenomenon in the pelagic environment? Aquat. Microbiol. Ecol. 13, 285–294 (1997).

    Article  Google Scholar 

  10. Simon, M., Grossart, H., Schweitzer, B. & Ploug, H. Microbial ecology of organic aggregates in aquatic ecosystems. Aquat. Microbiol. Ecol. 28, 175–211 (2002).

    Article  Google Scholar 

  11. Cook, A. M., Daughton, C. G. & Alexander, M. Phosphonate utilization by bacteria. J. Bacteriol. 133, 85–90 (1978).

    Google Scholar 

  12. Kamat, S. S., Williams, H. J., Dangott, L. J., Chakrabarti, M. & Raushel, F. M. The catalytic mechanism for aerobic formation of methane by bacteria. Nature 497, 132–136 (2013).

    Article  Google Scholar 

  13. Karl, D. M. et al. Aerobic production of methane in the sea. Nat. Geosci. 1, 473–478 (2008).

    Article  Google Scholar 

  14. Metcalf, W. W. et al. Synthesis of methylphosphonic acid by marine microbes: a source for methane in the aerobic ocean. Science 337, 1104–1107 (2012).

    Article  Google Scholar 

  15. Yu, X. et al. Diversity and abundance of phosphonate biosynthetic genes in nature. Proc. Natl Acad. Sci. USA 110, 20759–20764 (2013).

    Article  Google Scholar 

  16. Kolowith, L. C., Ingall, E. D. & Benner, R. Composition and cycling of marine organic phosphorus. Limnol. Oceanogr. 46, 309–320 (2001).

    Article  Google Scholar 

  17. Sannigrahi, P., Ingall, E. D. & Benner, R. Cycling of dissolved and particulate organic matter at station ALOHA: insights from 13C NMR spectroscopy coupled with elemental, isotopic and molecular analyses. Deep-Sea Res. I 52, 1429–1444 (2005).

    Article  Google Scholar 

  18. Karner, M. B., DeLong, E. F. & Karl, D. M. Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature 409, 507–510 (2001).

    Article  Google Scholar 

  19. Santoro, A. E. et al. Genomic and proteomic characterization of “Candidatus Nitrosopelagicus brevis”: an ammonia-oxidizing archaeon from the open ocean. Proc. Natl Acad. Sci. USA 112, 1173–1178 (2015).

    Article  Google Scholar 

  20. del Valle, D. & Karl, D. M. Aerobic production of methane from dissolved water column methylphosphonate and sinking particles in the North Pacific Subtropical Gyre. Aquat. Microbiol. Ecol. 73, 93–105 (2014).

    Article  Google Scholar 

  21. Young, C. L. & Ingall, E. D. Marine dissolved organic phosphorus composition: insights from samples recovered using combined electrodialysis/reverse osmosis. Aquat. Geochem. 16, 563–574 (2010).

    Article  Google Scholar 

  22. Aluwihare, L. I., Repeta, D. J. & Chen, R. F. A major biopolymeric component to dissolved organic carbon in surface sea water. Nature 387, 166–169 (1997).

    Article  Google Scholar 

  23. McGrath, J. W., Chin, J. P. & Quinn, J. P. Organophosphonates revealed: new insights into the microbial metabolism of ancient molecules. Nat. Rev. Microbiol. 11, 412–419 (2013).

    Article  Google Scholar 

  24. Holmes, E. M., Sansone, J. F., Rust, T. M. & Popp, B. N. Methane production, consumption, and air-sea exchange in the open ocean: an evaluation based on carbon isotopic ratios. Glob. Biogeochem. Cycles 14, 1–10 (2000).

    Article  Google Scholar 

  25. Sasakawa, M. et al. Carbon isotopic characterization for the origin of excess methane in subsurface seawater. J. Geophys. Res. 113, C03012 (2008).

    Article  Google Scholar 

  26. Repeta, D. J. & Aluwihare, L. I. Radiocarbon analysis of neutral sugars in high molecular weight dissolved organic carbon: implications for organic carbon cycling. Limnol. Oceanogr. 51, 1045–1053 (2006).

    Article  Google Scholar 

  27. Björkman, K. & Karl, D. M. Bioavailability of dissolved organic phosphorus in the euphotic zone at Station ALOHA, North Pacific Subtropical Gyre. Limnol. Oceanogr. 48, 1049–1057 (2003).

    Article  Google Scholar 

  28. van Mooy, B. A. S. et al. Major role of planktonic phosphate reduction in the marine phosphorus redox cycle. Science 348, 783–785 (2015).

    Article  Google Scholar 

  29. Bogard, M. J. et al. Oxic water column methanogenesis as a major component of aquatic CH4 fluxes. Nat. Commun. 5, 5350 (2014).

    Article  Google Scholar 

  30. Martinez, A., Tyson, G. W. & Delong, E. F. Widespread known and novel phosphonate utilization pathways in marine bacteria revealed by functional screening and metagenomic analyses. Environ. Microbiol. 12, 222–238 (2010).

    Article  Google Scholar 

  31. Karl, D. K. & Tien, G. MAGIC: a sensitive and precise method for measuring phosphorus in aquatic environments. Limnol. Oceanogr. 37, 105–116 (1992).

    Article  Google Scholar 

  32. Repeta, D. J. in Biogeochemistry of Dissolved Organic Matter (eds Hansell, D. A. & Carlson, C. A.) 21–63 (Academic, 2015).

    Book  Google Scholar 

  33. Ferrón, S., Wilson, S. T., Martínez-García, S., Quay, P. D. & Karl, D. M. Metabolic balance in the mixed layer of the oligotrophic North Pacific Ocean from diel changes in O2/Ar saturation ratios. Geophys. Res. Lett. 42, 3421–3430 (2015).

    Article  Google Scholar 

  34. Kana, T. M. et al. Membrane inlet mass spectrometer for rapid high-precision determination of N2, O2, and Ar in environmental water samples. Anal. Chem. 66, 4166–4170 (1994).

    Article  Google Scholar 

  35. Kana, T. M., Cornwell, J. C. & Zhong, L. Determination of denitrification in the Chesapeake Bay from measurements of N2 accumulation in bottom water. Estuar. Coast 29, 222–231 (2006).

    Article  Google Scholar 

  36. García, H. E. & Gordon, L. I. Oxygen solubility in seawater: better fitting equations. Limnol. Oceanogr. 37, 1307–1312 (1992).

    Article  Google Scholar 

  37. Hamme, R. C. & Emerson, S. R. The solubility of neon, nitrogen and argon in distilled water and seawater. Deep-Sea Res. I 51, 1517–1528 (2004).

    Article  Google Scholar 

  38. Sosa, O. A., Gifford, S. M., Repeta, D. J. & DeLong, E. F. High molecular weight dissolved organic matter enrichment selects for methylotrophs in dilution to extinction cultures. ISME J. 9, 1–15 (2015).

    Article  Google Scholar 

  39. Lalucat, J., Bennasar, A., Bosch, R., García-Valdés, E. & Palleroni, N. J. Biology of Pseudomonas stutzeri. Microbiol. Mol. Biol. Rev. 70, 510–547 (2006).

    Article  Google Scholar 

  40. White, A. K. & Metcalf, W. W. Two C–P lyase operons in Pseudomonas stutzeri and their roles in the oxidation of phosphonates, phosphite, and hypophosphite. J. Bacteriol. 186, 4730–4739 (2004).

    Article  Google Scholar 

  41. Errey, J. C. & Blanchard, J. S. Functional annotation and kinetic characterization of PhnO from Salmonella enterica. Biochemistry 45, 3033–3039 (2006).

    Article  Google Scholar 

  42. Hover-Jensen, B., McSorley, F. R. & Zechel, D. L. Catabolism and detoxification of 1-aminoalkylphosphonic acids: N-acetylation by the phnO gene product. PLoS ONE 7, e46416 (2012).

    Article  Google Scholar 

  43. Metcalf, W. W. & Wanner, B. L. Mutation analysis of an Escherichia coli fourteen-gene operon for phosphonate degradation, using TnphoA′ elements. J. Bacteriol. 175, 3430–3442 (1993).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Captain and crew of the RV Kilo Moana as well as K. Olson and the staff at the Natural Energy Laboratory, Hawaii Authority for assistance in sample collection. We also thank R. Boiteau for his assistance with mass spectrometry, A. Bate for helping with gas chromatography measurements, K. Doggett for flow cytometry analysis and the Hawaii Ocean Time-series team for facilitating part of this work. This research is a contribution of the Daniel K. Inouye Center for Microbial Oceanography: Research and Education (C-MORE) and was supported by the Gordon and Betty Moore Foundation (through Grants GBMF3298 to D.J.R. and E.F.D., GBMF3777 to E.F.D. and GBMF3794 to D.M.K.), as well as a grant from the Simons Foundation (SCOPE Award ID 329108 to D.J.R., E.F.D. and D.M.K.).

Author information

Authors and Affiliations

Authors

Contributions

D.M.K., D.J.R. and E.F.D. designed the experiments with input from all co-authors. D.J.R. collected and purified DOM samples, and performed spectral analyses. S.F. performed microcosm incubations and trace gas analyses with input from D.M.K. O.A.S. isolated DOM degrading microbes, performed genomic analyses, and performed microcosm incubations and trace gas analyses with input from E.F.D. C.G.J. performed NMR spectral analyses of DOM. L.D.R. performed chemical degradation experiments and identified phosphonates in DOM. M.A. purified DOM and assisted in microcosm incubation experiments. D.J.R. drafted the manuscript with input from all authors.

Corresponding author

Correspondence to Daniel J. Repeta.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1240 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Repeta, D., Ferrón, S., Sosa, O. et al. Marine methane paradox explained by bacterial degradation of dissolved organic matter. Nature Geosci 9, 884–887 (2016). https://doi.org/10.1038/ngeo2837

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2837

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing