Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Simulation of deep-seated zonal jets and shallow vortices in gas giant atmospheres

Abstract

Jupiter’s banded cloud layer hosts spots of various sizes. The bands are defined by eastward and westward jet streams and the spots correspond to vortices, predominantly anticyclones, which rotate in the opposite direction of Earth’s cyclonic storms1,2,3. Despite 350 years of observation4, the origin and dynamics of jets and vortices in the atmospheres of giant planets remain debated. Simulations of the shallow weather layer produce both features, but only reproduce observed prograde equatorial flow on Jupiter and Saturn under special conditions5,6. In contrast, deep convection models reproduce equatorial superrotation, but lack coherent vortices7,8,9,10,11. Here we combine both approaches in a three-dimensional simulation where deep convection grades into a stably stratified shallow layer. We find that steady zonal jets are driven by deep convective flows, whereas anticyclonic vortices form where upwelling plumes impinge on the shallow layer. The simulated vortex circulation consists of cool anticyclones shielded by warm downwelling cyclonic rings and filaments, in agreement with observations and theory3,12,13,14,15. We find that the largest vortices form in westward anticyclonic shear flow nearest to the equatorial jet, similar to Saturn’s so-called storm alley16 and Jupiter’s Great Red Spot. We conclude that vortices have a deep origin in gas giant atmospheres.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Conductive stability and total stability ϒ(r, θ, φ, t) of the model.
Figure 2: Zonal velocity and vorticity.
Figure 3: Global and local views of vorticity and velocity.
Figure 4: Dynamics of a large anticyclone.

Similar content being viewed by others

References

  1. Vasavada, A. R. & Showman, A. P. Jovian atmospheric dynamics: An update after Galileo and Cassini. Rep. Prog. Phys. 68, 1935–1996 (2005).

    Article  Google Scholar 

  2. Legarreta, J. & Sánchez-Lavega, A. Jupiter’s cyclones and anticyclones vorticity from Voyager and Galileo images. Icarus 174, 178–191 (2005).

    Article  Google Scholar 

  3. Li, L. et al. Life cycles of spots on Jupiter from Cassini images. Icarus 172, 9–23 (2004).

    Article  Google Scholar 

  4. Rogers, J. H. The Giant Planet Jupiter Vol. 6 (Cambridge Univ. Press, 1995).

    Google Scholar 

  5. Williams, G. P. Planetary circulations: 1. Barotropic representation of Jovian and terrestrial turbulence. J. Atmos. Sci. 35, 1399–1426 (1978).

    Article  Google Scholar 

  6. Scott, R. & Polvani, L. M. Equatorial superrotation in shallow atmospheres. Geophys. Res. Lett. 35, 24202–24206 (2008).

    Article  Google Scholar 

  7. Busse, F. H. A simple model of convection in the Jovian atmosphere. Icarus 20, 255–260 (1976).

    Article  Google Scholar 

  8. Heimpel, M., Aurnou, J. & Wicht, J. Simulation of equatorial and high-latitude jets on Jupiter in a deep convection model. Nature 438, 193–196 (2005).

    Article  Google Scholar 

  9. Jones, C. A. & Kuzanyan, K. M. Compressible convection in the deep atmospheres of giant planets. Icarus 204, 227–238 (2009).

    Article  Google Scholar 

  10. Kaspi, Y., Flierl, G. R. & Showman, A. P. The deep wind structure of the giant planets: Results from an anelastic general circulation model. Icarus 202, 525–542 (2009).

    Article  Google Scholar 

  11. Gastine, T., Heimpel, M. & Wicht, J. Zonal flow scaling in rapidly-rotating compressible convection. Phys. Earth Planet. Inter. 232, 36–50 (2014).

    Article  Google Scholar 

  12. De Pater, I. et al. Persistent rings in and around Jupiter’s anticyclones—Observations and theory. Icarus 210, 742–762 (2010).

    Article  Google Scholar 

  13. Dunkerton, T. J. & Scott, R. K. A barotropic model of the angular momentum-conserving potential vorticity staircase in spherical geometry. J. Atmos. Sci. 65, 1105–1136 (2008).

    Article  Google Scholar 

  14. Marcus, P. S. & Shetty, S. Jupiter’s zonal winds: Are they bands of homogenized potential vorticity organized as a monotonic staircase? Phil. Trans. R. Soc. A 369, 771–795 (2011).

    Article  Google Scholar 

  15. Harvey, B. J., Ambaum, M. H. & Carton, X. J. Instability of shielded surface temperature vortices. J. Atmos. Sci. 68, 964–971 (2011).

    Article  Google Scholar 

  16. Vasavada, A. et al. Cassini imaging of Saturn: Southern hemisphere winds and vortices. J. Geophys. Res. 111, 1991–2012 (2006).

    Article  Google Scholar 

  17. Liu, J., Goldreich, P. M. & Stevenson, D. J. Constraints on deep-seated zonal winds inside Jupiter and Saturn. Icarus 196, 653–664 (2008).

    Article  Google Scholar 

  18. French, M. et al. Ab initio simulations for material properties along the Jupiter adiabat. Astrophys. J. Suppl. Ser. 202, 5–15 (2012).

    Article  Google Scholar 

  19. Heimpel, M. & Gómez Pérez, N. On the relationship between zonal jets and dynamo action in giant planets. Geophys. Res. Lett. 38, 14201–14206 (2011).

    Article  Google Scholar 

  20. Jones, C. A dynamo model of Jupiter’s magnetic field. Icarus 241, 148–159 (2014).

    Article  Google Scholar 

  21. Gastine, T., Wicht, J., Duarte, L., Heimpel, M. & Becker, A. Explaining Jupiter’s magnetic field and equatorial jet dynamics. Geophys. Res. Lett. 41, 5410–5419 (2014).

    Article  Google Scholar 

  22. Atkinson, D. H., Pollack, J. B. & Seiff, A. The Galileo Probe Doppler Wind Experiment: Measurement of the deep zonal winds on Jupiter. J. Geophys. Res. 103, 22911–22928 (1998).

    Article  Google Scholar 

  23. Magalhães, J. A., Seiff, A. & Young, R. E. The stratification of Jupiter’s troposphere at the Galileo probe entry site. Icarus 158, 410–433 (2002).

    Article  Google Scholar 

  24. Ingersoll, A. P. et al. in Jupiter: Planet, Satellites, and Magnetosphere (eds Bagenal, F., Dowling, T. E. & McKinnon, W. B.) 105–128 (Cambridge Univ. Press, 2004).

    Google Scholar 

  25. Rhines, P. B. Waves and turbulence on a beta-plane. J. Fluid Mech. 69, 417–443 (1975).

    Article  Google Scholar 

  26. Aurnou, J., Heimpel, M. & Wicht, J. The effects of vigorous mixing in a convective model of zonal flow on the ice giants. Icarus 190, 110–126 (2007).

    Article  Google Scholar 

  27. Gastine, T., Wicht, J. & Aurnou, J. Zonal flow regimes in rotating spherical shells: An application to giant planets. Icarus 225, 156–172 (2013).

    Article  Google Scholar 

  28. Sánchez-Lavega, A. et al. Deep winds beneath Saturn’s upper clouds from a seasonal long-lived planetary-scale storm. Nature 475, 71–74 (2011).

    Article  Google Scholar 

  29. Del Genio, A. D. et al. in Saturn from Cassini-Huygens 113–159 (Springer, 2009).

    Book  Google Scholar 

  30. Galperin, B. et al. Cassini observations reveal a regime of zonostrophic macroturbulence on Jupiter. Icarus 229, 295–320 (2014).

    Article  Google Scholar 

  31. Lantz, S. R. & Fan, Y. Anelastic magnetohydrodynamic equations for modeling solar and stellar convection zones. Astrophys. J. Suppl. Ser. 121, 247–264 (1999).

    Article  Google Scholar 

  32. Gastine, T. & Wicht, J. Effects of compressibility on driving zonal flow in gas giants. Icarus 219, 428–442 (2012).

    Article  Google Scholar 

  33. Jones, C. A. et al. Anelastic convection-driven dynamo benchmarks. Icarus 216, 120–135 (2011).

    Article  Google Scholar 

  34. Wicht, J. Inner-core conductivity in numerical dynamo simulations. Phys. Earth Planet. Int. 132, 281–302 (2002).

    Article  Google Scholar 

  35. Glatzmaier, G. Numerical simulations of stellar convective dynamos. I. The model and method. J. Comp. Phys. 55, 461–484 (1984).

    Article  Google Scholar 

  36. Kuang, W. & Bloxham, J. Numerical modeling of magnetohydrodynamic convection in a rapidly rotating spherical shell: Weak and strong field dynamo action. J. Comp. Phys. 153, 51–81 (1999).

    Article  Google Scholar 

Download references

Acknowledgements

Computational resources provided by Compute Canada. Partial support for M.H. provided by an NSERC Discovery grant. Support for T.G. and J.W. provided by the German Science Foundation (DFG) within special priority programme 1488.

Author information

Authors and Affiliations

Authors

Contributions

M.H. ran the simulation, wrote the manuscript and created the figures, with editing and assistance on figures by J.W. and T.G. T.G. wrote the computational code with assistance from J.W.

Corresponding author

Correspondence to Moritz Heimpel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 834 kb)

Supplementary Movies

Supplementary Movie 1 (MOV 12326 kb)

Supplementary Movies

Supplementary Movie 2 (MOV 20804 kb)

Supplementary Movies

Supplementary Movie 3 (MOV 20839 kb)

Supplementary Movies

Supplementary Movie 4 (MOV 17441 kb)

Supplementary Movies

Supplementary Movie 5 (MOV 20725 kb)

Supplementary Movies

Supplementary Movie 6 (MOV 20887 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heimpel, M., Gastine, T. & Wicht, J. Simulation of deep-seated zonal jets and shallow vortices in gas giant atmospheres. Nature Geosci 9, 19–23 (2016). https://doi.org/10.1038/ngeo2601

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2601

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing