Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Robust global ocean cooling trend for the pre-industrial Common Era

Abstract

The oceans mediate the response of global climate to natural and anthropogenic forcings. Yet for the past 2,000 years — a key interval for understanding the present and future climate response to these forcings — global sea surface temperature changes and the underlying driving mechanisms are poorly constrained. Here we present a global synthesis of sea surface temperatures for the Common Era (ce) derived from 57 individual marine reconstructions that meet strict quality control criteria. We observe a cooling trend from 1 to 1800 ce that is robust against explicit tests for potential biases in the reconstructions. Between 801 and 1800 ce, the surface cooling trend is qualitatively consistent with an independent synthesis of terrestrial temperature reconstructions, and with a sea surface temperature composite derived from an ensemble of climate model simulations using best estimates of past external radiative forcings. Climate simulations using single and cumulative forcings suggest that the ocean surface cooling trend from 801 to 1800 ce is not primarily a response to orbital forcing but arises from a high frequency of explosive volcanism. Our results show that repeated clusters of volcanic eruptions can induce a net negative radiative forcing that results in a centennial and global scale cooling trend via a decline in mixed-layer oceanic heat content.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Correlation map and locations of the 57 reconstructions in the Ocean2k SST synthesis.
Figure 2: Ocean2k global SST composite and sensitivity analyses.
Figure 3: Global SST and temperature trends for 801–1800 CE.
Figure 4: Common Era Ocean2k SST synthesis and model simulation slopes, volcanic forcing and EBM response.

References

  1. Moberg, A., Sonechkin, D. M., Holmgren, K., Datsenko, N. M. & Karlen, W. Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data. Nature 433, 613–617 (2005).

    Article  Google Scholar 

  2. Mann, M. E. et al. Global signatures and dynamical origins of the Little Ice Age and Medieval Climate Anomaly. Science 326, 1256–1260 (2009).

    Article  Google Scholar 

  3. Jones, P. D. et al. High-resolution palaeoclimatology of the last millennium: A review of current status and future prospects. Holocene 19, 3–49 (2009).

    Article  Google Scholar 

  4. Braconnot, P. et al. Evaluation of climate models using palaeoclimatic data. Nature Clim. Change 2, 417–424 (2012).

    Article  Google Scholar 

  5. Marcott, S. A., Shakun, J. D., Clark, P. U. & Mix, A. C. A reconstruction of regional and global temperature for the past 11,300 years. Science 339, 1198–1201 (2013).

    Article  Google Scholar 

  6. Schmidt, G. A. et al. Climate forcing reconstructions for use in PMIP simulations of the last millennium (v1.1). Geosci. Model Dev. 5, 185–191 (2012).

    Article  Google Scholar 

  7. PAGES 2k Consortium Continental-scale temperature variability during the past two millennia. Nature Geosci. 6, 339–346 (2013).

  8. Gill, A. E. Atmosphere–Ocean Dynamics Vol. 30 (International Geophysics Series, Academic, 1982).

    Google Scholar 

  9. Balmaseda, M. A., Trenberth, K. E. & Källén, E. Distinctive climate signals in reanalysis of global ocean heat content. Geophys. Res. Lett. 40, 1754–1759 (2013).

    Article  Google Scholar 

  10. Rhein, M. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 255–315 (IPCC, Cambridge Univ. Press, 2013).

    Google Scholar 

  11. Kennedy, J. J. A review of uncertainty in in situ measurements and data sets of sea surface temperature. Rev. Geophys. 52, 1–32 (2014).

    Article  Google Scholar 

  12. Lee, T. C. K., Zwiers, F. W. & Tsao, M. Evaluation of proxy-based millennial reconstruction methods. Clim. Dynam. 31, 263–281 (2008).

    Article  Google Scholar 

  13. Mann, M. E. et al. Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. Proc. Natl Acad. Sci. USA 105, 13252–13257 (2008).

    Article  Google Scholar 

  14. Evans, M. N., Tolwinski-Ward, S. E., Thompson, D. M. & Anchukaitis, K. J. Applications of proxy system modeling in high resolution paleoclimatology. Quat. Sci. Rev. 76, 16–28 (2013).

    Article  Google Scholar 

  15. Lohmann, G., Pfeiffer, M., Laepple, T., Leduc, G. & Kim, J. H. A model–data comparison of the Holocene global sea surface temperature evolution. Clim. Past 9, 1807–1839 (2013).

    Article  Google Scholar 

  16. Laepple, T. & Huybers, P. Global and regional variability in marine surface temperatures. Geophys. Res. Lett. 41, 2528–2534 (2014).

    Article  Google Scholar 

  17. Lamb, H. H. The early medieval warm epoch and its sequel. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1, 13–37 (1965).

    Article  Google Scholar 

  18. Neukom, R. et al. Inter-hemispheric temperature variability over the past millennium. Nature Clim. Change 4, 362–367 (2014).

    Article  Google Scholar 

  19. Kaplan, A. et al. Analyses of global sea surface temperature 1856–1991. J. Geophys. Res.-Oceans 103, 18567–18589 (1998).

    Article  Google Scholar 

  20. Allan, R. et al. The international Atmospheric Circulation Reconstructions over the Earth (ACRE) initiative. Bull. Am. Meteorol. Soc. 92, 1421–1425 (2011).

    Article  Google Scholar 

  21. Emile-Geay, J., Cobb, K. M., Mann, M. E. & Wittenberg, A. T. Estimating central equatorial Pacific SST variability over the past millennium. Part I: Methodology and validation. J. Climate 26, 2302–2328 (2013).

    Article  Google Scholar 

  22. Tierney, J. E. et al. Tropical sea-surface temperatures for the past four centuries reconstructed from coral archives. Paleoceanography 30, 226–252 (2015).

    Article  Google Scholar 

  23. Evans, M. N., Kaplan, A. & Cane, M. A. Pacific sea surface temperature field reconstruction from coral δ18O data using reduced space objective analysis. Paleoceanography 17, 1007 (2002).

    Article  Google Scholar 

  24. Masson-Delmotte, V. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 409–415 (IPCC, Cambridge Univ. Press, 2013).

    Google Scholar 

  25. McKay, N. P. & Kaufman, D. S. An extended Arctic proxy temperature database for the past 2,000 years. Sci. Data 1, 140026 (2014).

    Article  Google Scholar 

  26. Phipps, S. J. et al. Paleoclimate data–model comparison and the role of climate forcings over the past 1500 years. J. Climate 26, 6915–6936 (2013).

    Article  Google Scholar 

  27. Crespin, E., Goosse, H., Fichefet, T., Mairesse, A. & Sallaz-Damaz, Y. Arctic climate over the past millennium: Annual and seasonal responses to external forcings. Holocene 23, 321–329 (2013).

    Article  Google Scholar 

  28. Delaygue, G. & Bard, E. An Antarctic view of Beryllium-10 and solar activity for the past millennium. Clim. Dynam. 36, 2201–2218 (2011).

    Article  Google Scholar 

  29. Schurer, A. P., Tett, S. F. B. & Hegerl, G. C. Small influence of solar variability on climate over the past millennium. Nature Geosci. 7, 104–108 (2014).

    Article  Google Scholar 

  30. Bard, E. & Frank, M. Climate change and solar variability: What's new under the sun? Earth Planet. Sci. Lett. 248, 1–14 (2006).

    Article  Google Scholar 

  31. Rind, D., Lean, J., Lerner, J., Lonergan, P. & Leboissitier, A. Exploring the stratospheric/tropospheric response to solar forcing. J. Geophys. Res.-Atmos. 113, D24103 (2008).

    Article  Google Scholar 

  32. Berger, A. L. Long-term variations of daily insolation and Quaternary climatic changes. J. Atmos. Sci. 35, 2362–2367 (1978).

    Article  Google Scholar 

  33. Hays, J. D., Imbrie, J. & Shackleton, N. J. Variations in the Earth's orbit: Pacemaker of the Ice Ages. Science 194, 1121–1132 (1976).

    Article  Google Scholar 

  34. Esper, J. et al. Orbital forcing of tree-ring data. Nature Clim. Change 2, 862–866 (2012).

    Article  Google Scholar 

  35. Kaufman, D. S. et al. Recent warming reverses long-term Arctic cooling. Science 325, 1236–1239 (2009).

    Article  Google Scholar 

  36. Brovkin, V. et al. Biogeophysical effects of historical land cover changes simulated by six Earth system models of intermediate complexity. Clim. Dynam. 26, 587–600 (2006).

    Article  Google Scholar 

  37. Goosse, H. et al. The origin of the European “Medieval Warm Period”. Clim. Past 2, 99–113 (2006).

    Article  Google Scholar 

  38. de Noblet-Ducoudré, N. et al. Determining robust impacts of land-use-induced land cover changes on surface climate over North America and Eurasia: Results from the first set of LUCID experiments. J. Climate 25, 3261–3281 (2012).

    Article  Google Scholar 

  39. He, F. et al. Simulating global and local surface temperature changes due to Holocene anthropogenic land cover change. Geophys. Res. Lett. 41, 623–631 (2014).

    Article  Google Scholar 

  40. Hansen, J., Lacis, A., Ruedy, R. & Sato, M. Potential climate impact of Mount Pinatubo eruption. Geophys. Res. Lett. 19, 215–218 (1992).

    Article  Google Scholar 

  41. Robock, A. Volcanic eruptions and climate. Rev. Geophys. 38, 191–219 (2000).

    Article  Google Scholar 

  42. Stenchikov, G. et al. Volcanic signals in oceans. J. Geophys. Res.-Atmos. 114, D16104 (2009).

    Article  Google Scholar 

  43. Miller, G. H. et al. Abrupt onset of the Little Ice Age triggered by volcanism and sustained by sea-ice/ocean feedbacks. Geophys. Res. Lett. 39, L02708 (2012).

    Article  Google Scholar 

  44. Plummer, C. T. et al. An independently dated 2000-yr volcanic record from Law Dome, East Antarctica, including a new perspective on the dating of the 1450s CE eruption of Kuwae, Vanuatu. Clim. Past 8, 1929–1940 (2012).

    Article  Google Scholar 

  45. Sigl, M. et al. Insights from Antarctica on volcanic forcing during the Common Era. Nature Clim. Change 4, 693–697 (2014).

    Article  Google Scholar 

  46. Goosse, H., Barriat, P. Y., Lefebvre, W., Loutre, M. F. & Zunz, V. Introduction to Climate Dynamics and Climate Modeling (Université catholique de Louvain, 2015); http://www.climate.be/textbook

    Google Scholar 

  47. Crowley, T. J. Causes of climate change over the past 1000 years. Science 289, 270–277 (2000).

    Article  Google Scholar 

  48. Zhong, Y. et al. Centennial-scale climate change from decadally-paced explosive volcanism: A coupled sea ice-ocean mechanism. Clim. Dynam. 37, 2373–2387 (2011).

    Article  Google Scholar 

  49. Mignot, J., Khodri, M., Frankignoul, C. & Servonnat, J. Volcanic impact on the Atlantic Ocean over the last millennium. Clim. Past 7, 1439–1455 (2011).

    Article  Google Scholar 

  50. Ding, Y. et al. Ocean response to volcanic eruptions in Coupled Model Intercomparison Project 5 simulations. J. Geophys. Res.-Oceans 119, 5622–5637 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the many scientists who made their published data sets available via public data repositories. T. Kiefer, L. von Gunten and C. Telepski from the IGBP PAGES-IPO provided organizational and logistical support. V. Masson-Delmotte, C. Giry, S. P. Bryan, S. Stevenson, D. Colombaroli, B. Horton, J. Tierney and the Ocean2k HR Working Group are thanked for early input to the project design and methodology. G. Lohmann assisted with model output. A. Mairesse assisted with model figures. L. Skinner and D. Reynolds are thanked for discussions on age models. We are grateful to the 75 volunteers who constructed the Ocean2k metadatabase (see Supplementary Information for full list of names). We acknowledge the World Climate Research Programme's Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modelling groups (listed in Supplementary Table S4) for producing and making available their model output. For CMIP, the US Department of Energy's Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. We acknowledge support from PAGES, a core project of IGBP financially supported by the US and Swiss National Science Foundations (NSFs) and NOAA; Australian Research Council (ARC) Discovery Project grant DP1092945 (H.V.M., S.J.P.), ARC Future Fellowship FT140100286 grant (H.V.M.), AINSE Fellowship grant (H.V.M.) and the research contributes to ARC Australian Laureate Fellowship FL120100050; US NSF awards NSF/ATM09-02794 (M.N.E.) and NSF/ATM0902715 (M.N.E), and Royal Society of New Zealand Marsden Fund grant 11-UOA-027 (M.N.E.); F.R.S-FNRS (Belgium; H.G.); French National Research Agency (ANR) under ISOBIOCLIM grant (G.L.); European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement number 243908, Past4Future 'Climate change — Learning from the past climate' contribution no. 81 (H.G., B.M., P.G.M., M.-S.S.); CSIC-Ramón y Cajal post-doctoral programme RYC-2013-14073 (B.M.), Clare Hall College, Cambridge, Shackleton Fellowship (B.M.) and Red CONSOLIDER GRACCIE CTM2014-59111-REDC (B.M.); US Geological Survey's Climate and Land Use Change Research and Development Program and the Volcano Science Center (J.A.A.); Ralph E. Hall Endowed Award for Innovative Research (D.W.O.); Danish Council for Independent Research Natural Science OCEANHEAT project 12-126709/FNU (M.-S.S.); LEFE/INSU/NAIV project (M.-A.S.); NSF of China grant 41273083 (K.S.) and Shanhai Fund grant 2013SH012 (K.S.); UTIG Ewing-Worzel Fellowship (K.T.); Swedish Research Council grant 621-2011-5090 (H.L.F.); and from a Marie Curie Intra-European Fellowship for Career Development (V.E.).

Author information

Authors and Affiliations

Authors

Contributions

M.N.E., H.V.M., D.W.O., H.G., G.L. and B.M. designed the project with input from J.A.A., M.-S.S., M.-A.S., K.S. and V.E.; H.V.M. and G.L. led the synthesis. H.V.M. and B.M. collated and evaluated the reconstructions, and managed the data with assistance from J.A.A.; M.N.E. led the analysis with important contributions from H.G., J.A.A., B.M., G.L., S.J.P., H.V.M., D.W.O., P.G.M., M.-S.S. and M.-A.S.; H.G. and S.J.P. collated, managed and analysed the model simulations with input from M.N.E., G.L. and H.V.M.; H.V.M. led the writing with the assistance of M.N.E., H.G., G.L., B.M., J.A.A., P.G.M., D.W.O., M.-S.S., M.-A.S., S.J.P., K.S., K.T., H.L.F and V.E.; all authors reviewed the manuscript.

Corresponding author

Correspondence to Helen V. McGregor.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary information (PDF 9213 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McGregor, H., Evans, M., Goosse, H. et al. Robust global ocean cooling trend for the pre-industrial Common Era. Nature Geosci 8, 671–677 (2015). https://doi.org/10.1038/ngeo2510

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2510

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing