Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Globally significant greenhouse-gas emissions from African inland waters

Abstract

Carbon dioxide emissions to the atmosphere from inland waters—streams, rivers, lakes and reservoirs—are nearly equivalent to ocean and land sinks globally. Inland waters can be an important source of methane and nitrous oxide emissions as well, but emissions are poorly quantified, especially in Africa. Here we report dissolved carbon dioxide, methane and nitrous oxide concentrations from 12 rivers in sub-Saharan Africa, including seasonally resolved sampling at 39 sites, acquired between 2006 and 2014. Fluxes were calculated from published gas transfer velocities, and upscaled to the area of all sub-Saharan African rivers using available spatial data sets. Carbon dioxide-equivalent emissions from river channels alone were about 0.4 Pg carbon per year, equivalent to two-thirds of the overall net carbon land sink previously reported for Africa. Including emissions from wetlands of the Congo river increases the total carbon dioxide-equivalent greenhouse-gas emissions to about 0.9 Pg carbon per year, equivalent to about one quarter of the global ocean and terrestrial combined carbon sink. Riverine carbon dioxide and methane emissions increase with wetland extent and upland biomass. We therefore suggest that future changes in wetland and upland cover could strongly affect greenhouse-gas emissions from African inland waters.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The 12 studied rivers cover a wide range of discharge, catchment size and land cover.
Figure 2: Complex interplay of biogeochemical processes is revealed by GHGs property–property relations.
Figure 3: Wetland presence drives the pattern of GHGs and O2 in the Congo River.
Figure 4: Wetland presence drives the pattern of CO2 and CH4 concentrations across sub-Saharan African Rivers.

Similar content being viewed by others

References

  1. Cole, J. J. et al. Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget. Ecosystems 10, 171–184 (2007).

    Article  Google Scholar 

  2. Aufdenkampe, A. K. et al. Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere. Front. Ecol. Environ. 9, 53–60 (2011).

    Article  Google Scholar 

  3. Raymond, P. A. et al. Global carbon dioxide emissions from inland waters. Nature 503, 355–359 (2013).

    Article  Google Scholar 

  4. Bastviken, D., Tranvik, L. J., Downing, J. A., Crill, P. M. & Enrich-Prast, A. Freshwater methane emissions offset the continental carbon sink. Science 331, 50 (2011).

    Article  Google Scholar 

  5. Baulch, H. M., Schiff, S. L., Maranger, R. & Dillon, P. J. Nitrogen enrichment and the emission of nitrous oxide from streams. Glob. Biogeochem. Cycles 25, GB4013 (2011).

    Article  Google Scholar 

  6. IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

    Google Scholar 

  7. Le Quéré, C. et al. Global carbon budget 2014. Earth Syst. Sci. Data Discuss. 7, 521–610 (2014).

    Article  Google Scholar 

  8. Valentini, R. et al. A full greenhouse gases budget of Africa: Synthesis, uncertainties, and vulnerabilities. Biogeosciences 11, 381–407 (2014).

    Article  Google Scholar 

  9. Lapierre, J.-F. & del Giorgio, P. A. Geographical and environmental drivers of regional differences in the lake ( p CO 2 ) versus DOC relationship across northern landscapes. J. Geophys. Res. 117, G03015 (2012).

    Google Scholar 

  10. Maberly, S. C., Barker, P. A., Stott, A. W. & De Ville, M. M. Catchment productivity controls CO2 emissions from lakes. Nature Clim. Change 3, 391–394 (2013).

    Article  Google Scholar 

  11. Melack, J. M. & Engle, D. L. An organic carbon budget for an Amazon floodplain lake. Verh. Int. Verein. Limnol. 30, 1179–1182 (2009).

    Google Scholar 

  12. Engle, D. L., Melack, J. M., Doyle, R. D. & Fisher, T. R. High rates of net primary production and turnover of floating grasses on the Amazon floodplain: Implications for aquatic respiration and regional CO2 flux. Glob. Change Biol. 14, 369–381 (2008).

    Article  Google Scholar 

  13. Abril, G. et al. Amazon River carbon dioxide outgassing fuelled by wetlands. Nature 505, 395–398 (2014).

    Article  Google Scholar 

  14. Richey, J. E., Melack, J. M., Aufdenkampe, A. K., Ballester, V. M. & Hess, L. Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2 . Nature 416, 617–620 (2002).

    Article  Google Scholar 

  15. Wang, Z. A. et al. Inorganic carbon speciation and fluxes in the Congo River. Geophys. Res. Lett. 40, 511–516 (2013).

    Article  Google Scholar 

  16. Abril, G. et al. Technical Note: Large overestimation of calculated ( p CO 2 ) in acidic, organic-rich freshwaters. Biogeosciences 12, 67–78 (2015).

    Google Scholar 

  17. Melack, J. M. et al. Regionalization of methane emissions in the Amazon Basin with microwave remote sensing. Glob. Change Biol. 10, 530–544 (2004).

    Article  Google Scholar 

  18. Bastviken, D. et al. Methane emissions from Pantanal, South America, during the low water season: Toward more comprehensive sampling. Environ. Sci. Technol. 44, 5450–5455 (2010).

    Article  Google Scholar 

  19. Sawakuchi, H. O. et al. Methane emissions from Amazonian Rivers and their contribution to the global methane budget. Glob. Change Biol. 20, 2829–2840 (2014).

    Article  Google Scholar 

  20. Bwangoy, J.-R. B., Hansen, M. C., Roy, D. P., De Grandi, G. & Justice, C. O. Wetland mapping in the Congo Basin using optical and radar remotely sensed data and derived topographical indices. Remote Sens. Environ. 114, 73–86 (2010).

    Article  Google Scholar 

  21. Richey, J. E., Devol, A. H., Wofy, S. C., Victoria, R. & Riberio, M. N. G. Biogenic gases and the oxidation and reduction of carbon in Amazon River and floodplain waters. Limnol. Oceanogr. 33, 551–561 (1988).

    Article  Google Scholar 

  22. Marwick, T. R. et al. Dynamic seasonal nitrogen cycling in response to anthropogenic N loading in a tropical catchment, Athi–Galana–Sabaki River, Kenya. Biogeosciences 11, 1–18 (2014).

    Article  Google Scholar 

  23. Yasin, J. A., Kroeze, C. & Mayorga, E. Nutrients export by rivers to the coastal waters of Africa: Past and future trends. Glob. Biogeochem. Cycles 24, GB0A07 (2010).

    Article  Google Scholar 

  24. Castillo, M. M., Kling, G. W. & Allan, J. D. Bottom-up controls on bacterial production in tropical lowland rivers. Limnol. Oceanogr. 48, 1466–1475 (2003).

    Article  Google Scholar 

  25. Teodoru, C. et al. Spatial variability and temporal dynamics of greenhouse gas (CO2, CH4, N2O) concentrations and fluxes along the Zambezi River mainstem and major tributaries. Biogeosciences 12, 2431–2453 (2015).

    Article  Google Scholar 

  26. Butman, D. & Raymond, P. A. Significant efflux of carbon dioxide from streams and rivers in the United States. Nature Geosci. 4, 839–842 (2011).

    Article  Google Scholar 

  27. Amado, A. M. et al. Tropical freshwater ecosystems have lower bacterial growth efficiency than temperate ones. Front. Microbiol. 4, 167 (2014).

    Google Scholar 

  28. Cardoso, S. J., Enrich-Prast, A., Pace, M. L. & Roland, F. Do models of organic carbon mineralization extrapolate to warmer tropical sediments? Limnol. Oceanogr. 59, 48–54 (2014).

    Article  Google Scholar 

  29. Pan, Y. et al. A Large and persistent carbon sink in the World’s forests. Science 333, 988–993 (2011).

    Article  Google Scholar 

  30. Richardson, D. C., Newbold, J. D., Aufdenkampe, A. K., Taylor, P. G. & Kaplan, L. A. Measuring heterotrophic respiration rates of suspended particulate organic carbon from stream ecosystems. Limnol. Oceanogr. 11, 247–261 (2013).

    Article  Google Scholar 

  31. Weiss, R. F. Determinations of carbon dioxide and methane by dual catalyst flame ionization chromatography and nitrous oxide by electron capture chromatography. J. Chromatogr. Sci. 19, 611–616 (1981).

    Article  Google Scholar 

  32. Yamamoto, S., Alcauskas, J. B. & Crozier, T. E. Solubility of methane in distilled water and seawater. J. Chem. Eng. Data 21, 78–80 (1976).

    Article  Google Scholar 

  33. Weiss, R. F. & Price, B. A. Nitrous oxide solubility in water and seawater. Mar. Chem. 8, 347–359 (1980).

    Article  Google Scholar 

  34. Koné, Y. J. M., Abril, G., Delille, B. & Borges, A. V. Seasonal variability of methane in the rivers and lagoons of Ivory Coast (West Africa). Biogeochemistry 100, 21–37 (2010).

    Article  Google Scholar 

  35. Bouillon, S., Korntheuer, M., Baeyens, W. & Dehairs, F. A new automated setup for stable isotope analysis of dissolved organic carbon. Limnol. Oceanogr. 4, 216–226 (2006).

    Article  Google Scholar 

  36. Standing Committee of Analysts, Methods for the Examination of Waters and Associated Materials (HMSO, 1981).

    Google Scholar 

  37. Standard Methods for the Examination of Water and Wastewater (APHA, 1998).

  38. Miranda, K. M. et al. A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide 5, 62–71 (2001).

    Article  Google Scholar 

  39. Liss, P. S. & Slater, P. G. Flux of gases across the air–sea interface. Nature 247, 181–184 (1974).

    Article  Google Scholar 

  40. Weiss, R. F. Carbon dioxide in water and seawater: The solubility of a non-ideal gas. Mar. Chem. 2, 203–215 (1974).

    Article  Google Scholar 

  41. Raymond, P. A. et al. Scaling the gas transfer velocity and hydraulic geometry in streams and small rivers. Limnol. Oceanogr. 2, 41–53 (2012).

    Article  Google Scholar 

  42. Wanninkhof, R. Relationship between wind speed and gas exchange over the ocean. J. Geophys. Res. 97, 7373–7382 (1992).

    Article  Google Scholar 

  43. Frankignoulle, M. Field measurements of air-sea CO2 exchange. Limnol. Oceanogr. 33, 313–322 (1988).

    Article  Google Scholar 

  44. Raymond, P. A. & Cole, J. J. Gas exchange in rivers and estuaries: Choosing a gas transfer velocity. Estuaries 24, 312–317 (2001).

    Article  Google Scholar 

  45. Guérin, F. et al. Gas transfer velocities of CO2 and CH4 in a tropical reservoir and its river downstream. J. Mar. Syst. 66, 161–172 (2007).

    Article  Google Scholar 

  46. Huotari, J., Haapanala, S., Pumpanen, J., Vesala, T. & Ojala, A. Efficient gas exchange between a boreal river and the atmosphere. Geophys. Res. Lett. 40, 5683–5686 (2013).

    Article  Google Scholar 

  47. Gålfalk, M., Bastviken, D., Fredriksson, S. & Arneborg, L. Determination of the piston velocity for water–air interfaces using flux chambers, acoustic Doppler velocimetry, and IR imaging of the water surface. J. Geophys. Res. 118, 770–782 (2013).

    Article  Google Scholar 

  48. Crawford, J. T. et al. Ebullitive methane emissions from oxygenated wetland streams. Glob. Change Biol. 20, 3408–3422 (2014).

    Article  Google Scholar 

  49. DelSontro, T. et al. Spatial Heterogeneity of methane ebullition in a large tropical reservoir. Environ. Sci. Technol. 45, 9866–9873 (2011).

    Article  Google Scholar 

  50. Deshmukh, C. et al. Physical controls on CH4 emissions from a newly flooded subtropical freshwater hydroelectric reservoir: Nam Theun 2. Biogeosciences 11, 4251–4269 (2014).

    Article  Google Scholar 

  51. Maeck, A., Hofmann, H. & Lorke, A. Pumping methane out of aquatic sediments – ebullition forcing mechanisms in an impounded river. Biogeosciences 11, 2925–2938 (2014).

    Article  Google Scholar 

  52. Bouillon, S. et al. Organic matter sources, fluxes and greenhouse gas exchange in the Oubangui River (Congo River basin). Biogeosciences 9, 2045–2062 (2012).

    Article  Google Scholar 

  53. Bouillon, S. et al. Contrasting biogeochemical characteristics of right-bank tributaries and a comparison with the mainstem Oubangui River, Central African Republic (Congo River basin). Sci. Rep. 4, 5402 (2014).

    Article  Google Scholar 

  54. Bouillon, S. et al. Distribution, origin and cycling of carbon in the Tana River (Kenya): A dry season basin-scale survey from headwaters to the delta. Biogeosciences 6, 2475–2493 (2009).

    Article  Google Scholar 

  55. HYDRO1K Elevation Derivative Database (US Geological Survey, 2000).

  56. Mayaux, P., Bartholomé, E., Fritz, S. & Belward, A. A new land-cover map of Africa for the year 2000. J. Biogeogr. 31, 861–877 (2004).

    Article  Google Scholar 

  57. Baccini, A., Laporte, N., Goetz, S. J., Sun, M. & Dong, H. A first Map of tropical Africa’s above-ground biomass derived from satellite imagery. Environ. Res. Lett. 3, 045011 (2008).

    Article  Google Scholar 

  58. Lehner, B. & Döll, P. Development and validation of a global database of lakes, reservoirs and wetlands. J. Hydrol. 296, 1–22 (2004).

    Article  Google Scholar 

  59. Olivry, J. C. Fleuves et Rivières du Cameroun (MESCES – ORSTOM, 1986).

    Google Scholar 

  60. Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Clim. 25, 1965–1978 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the European Research Council (ERC-StG 240002 AFRIVAL), the Fonds National de la Recherche Scientifique (FNRS, CAKI 2.4.598.07, TransCongo, 14711103), the Belgian Federal Science Policy (BELSPO) (projects COBAFISH SD/AR/05A and EAGLES SD/AR/02A), the Research Foundation Flanders (FWO-Vlaanderen), the Research Council of the KU Leuven, the IRD and INSU/CNRS (SOERE BVET and LIMON projects). The Boyekoli-Ebale-Congo Expedition (2010) was funded by the Belgian Development Cooperation, BELSPO, and Belgian National Lottery. A.V.B. and T.L. are a senior research associate and a postdoctoral researcher at the FNRS, respectively. We are very grateful for help in sampling from A. Yambélé (Direction de la Météorologie Nationale, Central African Republic), J.-D. Mbega (Institut de Recherches Agronomiques et Forestières, Gabon), B. Alhou (Université de Niamey, Niger), F. C. Nyoni and I. Nyambe (University of Zambia, Zambia), B. Ogwoka (Kenya Wildlife Service, Kenya), T. Mambo Baba and E. Tambwe Lukosha (Université de Kisangani, DRC), T. Kisekelwa (Institut Supérieur Pédagogique de Bukavu, DRC), J. N. Wabakanghanzi (Congo Atomic Energy Commission, DRC), C. M. Balagizi (Goma Volcano Observatory, DRC) and J. L. Boeglin (Géosciences Environnement Toulouse – GET, France), for analytical support from M.-V. Commarieu, S. Hoornaert, S. Petrovic (University of Liège (ULg)) and C. Deshmukh (GET), for advice and help in setting up the GCs at ULg from J. Barnes, G. Abril, B. Delille and W. Champenois, and for feedback and input on modelled basin-wide k values from P. Raymond.

Author information

Authors and Affiliations

Authors

Contributions

A.V.B. and S.B. conceived and designed the study and coordinated the project and fieldwork. Field data collection was carried out by all co-authors. T.L. carried out the geographical system information (GIS) analysis. A.V.B. drafted the manuscript, which was substantially commented upon and amended by S.B., C.R.T., T.R.M., N.G., T.L. and F.G. All co-authors approved the manuscript.

Corresponding author

Correspondence to Alberto V. Borges.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1538 kb)

Supplementary Information

Supplementary Information (XLSX 278 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borges, A., Darchambeau, F., Teodoru, C. et al. Globally significant greenhouse-gas emissions from African inland waters. Nature Geosci 8, 637–642 (2015). https://doi.org/10.1038/ngeo2486

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2486

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology