Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Amplified melt and flow of the Greenland ice sheet driven by late-summer cyclonic rainfall

Abstract

Intense rainfall events significantly affect Alpine and Alaskan glaciers through enhanced melting, ice-flow acceleration and subglacial sediment erosion, yet their impact on the Greenland ice sheet has not been assessed. Here we present measurements of ice velocity, subglacial water pressure and meteorological variables from the western margin of the Greenland ice sheet during a week of warm, wet cyclonic weather in late August and early September 2011. We find that extreme surface runoff from melt and rainfall led to a widespread acceleration in ice flow that extended 140 km into the ice-sheet interior. We suggest that the late-season timing was critical in promoting rapid runoff across an extensive bare ice surface that overwhelmed a subglacial hydrological system in transition to a less-efficient winter mode. Reanalysis data reveal that similar cyclonic weather conditions prevailed across southern and western Greenland during this time, and we observe a corresponding ice-flow response at all land- and marine-terminating glaciers in these regions for which data are available. Given that the advection of warm, moist air masses and rainfall over Greenland is expected to become more frequent in the coming decades, our findings portend a previously unforeseen vulnerability of the Greenland ice sheet to climate change.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The study area.
Figure 2: Records of meteorology, proglacial discharge, and ice velocity for the 2011 melt season.
Figure 3: The surface energy budget, melt, borehole water pressure and ice surface velocity and uplift at R13.
Figure 4: Reanalysis data for the August/September 2011 event including sea-level pressure for 27 August 2011, the near-surface air temperature (TAS) anomaly for the period 26 August–1 September versus the same period in the 1981–2010 baseline, and total precipitation for the week 26–30 August.
Figure 5: Long-term trends in rainfall seasonality and elevation.

Similar content being viewed by others

References

  1. Hanna, E. et al. Ice-sheet mass balance and climate change. Nature 498, 51–59 (2013).

    Article  Google Scholar 

  2. Vaughan, D. G. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Ch. 4 (IPCC, Cambridge Univ. Press, 2013).

    Google Scholar 

  3. van den Broeke, M. et al. Partitioning recent Greenland mass loss. Science 326, 984–986 (2009).

    Article  Google Scholar 

  4. Schuenemann, K. C. & Cassano, J. J. Changes in synoptic weather patterns and Greenland precipitation in the 20th and 21st centuries: 2. Analysis of 21st century atmospheric changes using self-organizing maps. J. Geophys. Res. 115, D05108 (2010).

    Article  Google Scholar 

  5. Vavrus, S. J. Extreme Arctic cyclones in CMIP5 historical simulations. Geophys. Res. Lett. 40, 6208–6212 (2013).

    Article  Google Scholar 

  6. Andrews, L. C. et al. Direct observations of evolving subglacial drainage beneath the Greenland Ice Sheet. Nature 514, 80–83 (2014).

    Article  Google Scholar 

  7. Bartholomew, I. et al. Seasonal evolution of subglacial drainage and acceleration in a Greenland outlet glacier. Nature Geosci. 3, 408–411 (2010).

    Article  Google Scholar 

  8. Bartholomew, I. et al. Seasonal variations in Greenland Ice Sheet motion: Inland extent and behaviour at higher elevations. Earth Planet. Sci. Lett. 307, 271–278 (2011).

    Article  Google Scholar 

  9. Bartholomew, I. et al. Short-term variability in Greenland Ice Sheet motion forced by time-varying meltwater drainage: Implications for the relationship between subglacial drainage system behavior and ice velocity. J. Geophys. Res. 117, F03002 (2012).

    Article  Google Scholar 

  10. Colgan, W. et al. The annual glaciohydrology cycle in the ablation zone of the Greenland ice sheet: Part 1. Hydrology model. J. Glaciol. 57, 697–709 (2011).

    Article  Google Scholar 

  11. Hoffman, M. J., Catania, G. A., Neumann, T. A., Andrews, L. C. & Rumrill, J. A. Links between acceleration, melting, and supraglacial lake drainage of the western Greenland Ice Sheet. J. Geophys. Res. 116, F04035 (2011).

    Article  Google Scholar 

  12. Schoof, C. Ice-sheet acceleration driven by melt water supply variability. Nature 468, 803–806 (2010).

    Article  Google Scholar 

  13. Sole, A. et al. Winter motion mediates dynamic response of the Greenland Ice Sheet to warmer summers. Geophys. Res. Lett. 40, 3940–3944 (2013).

    Article  Google Scholar 

  14. Zwally, J. H. et al. Surface melt-induced acceleration of Greenland ice-sheet flow. Science 297, 218–222 (2002).

    Article  Google Scholar 

  15. Cappelen, J., Jørgensen, B. V., Laursen, E. V., Stannius, L. S. & Thomsen, R. S. The Observed Climate of Greenland, 1958–99—with Climatological Standard Normals, 1961–90 Technical Report 00-18 (Danish Meteorological Institute, 2001); http://www.dmi.dk/fileadmin/user_upload/Rapporter/TR/2000/tr00-18.pdf

  16. Gascon, G., Sharp, M. & Bush, A. Changes in melt season characteristics on Devon Ice Cap, Canada, and their association with the Arctic atmospheric circulation. Ann. Glaciol. 54, 101–110 (2013).

    Article  Google Scholar 

  17. van den Broeke, M. R., Smeets, C. J. J. P. & van de Wal, R. S. W. The seasonal cycle and interannual variability of surface energy balance and melt in the ablation zone of the west Greenland ice sheet. Cryosphere 5, 377–390 (2011).

    Article  Google Scholar 

  18. van de Wal, R. S. W. et al. Twenty-one years of mass balance observations along the K-transect, West Greenland. Earth Syst. Sci. Data 4, 31–35 (2012).

    Article  Google Scholar 

  19. Mernild, S. H. & Liston, G. E. Surface melt extent for the Greenland Ice Sheet, 2011. Geogr. Tidsskr. 112, 84–88 (2012).

    Article  Google Scholar 

  20. Fudge, T. J., Harper, J. T., Humphrey, N. F. & Pfeffer, W. T. Rapid glacier sliding, reverse ice motion and subglacial water pressure during an autumn rainstorm. J. Glaciol. 50, 101–107 (2009).

    Article  Google Scholar 

  21. O’Neel, S., Echelmeyer, K. A. & Motyka, R. J. Short-term flow dynamics of a retreating tidewater glacier: LeConte Glacier, Alaska U.S.A. J. Glaciol. 47, 567–578 (2001).

    Article  Google Scholar 

  22. Chandler, D. M. et al. Evolution of the subglacial drainage system beneath the Greenland Ice Sheet revealed by tracers. Nature Geosci. 6, 195–198 (2013).

    Article  Google Scholar 

  23. Meierbachtol, T., Harper, J. & Humphrey, N. Basal drainage system response to increasing surface melt on the Greenland ice sheet. Science 341, 777–779 (2013).

    Article  Google Scholar 

  24. Iken, A. The effect of the subglacial water pressure on the sliding velocity of a glacier in an idealized numerical model. J. Glaciol. 27, 407–421 (1981).

    Article  Google Scholar 

  25. Serreze, M., Box, J., Barry, R. & Walsh, J. Characteristics of Arctic synoptic activity, 1952–1989. Meteorol. Atmos. Phys. 51, 147–164 (1993).

    Article  Google Scholar 

  26. van den Broeke, M., Smeets, P., Ettema, J. & Munneke, P. K. Surface radiation balance in the ablation zone of the west Greenland ice sheet. J. Geophys. Res. 113, D13105 (2008).

    Article  Google Scholar 

  27. Kalnay, E. et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 77, 437–471 (1996).

    Article  Google Scholar 

  28. Chen, Q.-s., Bromwich, D. H. & Bai, L. Precipitation over Greenland retrieved by a dynamic method and its relation to cyclonic activity. J. Clim. 10, 839–870 (1997).

    Article  Google Scholar 

  29. Schuenemann, K. C., Cassano, J. J. & Finnis, J. Synoptic forcing of precipitation over Greenland: Climatology for 1961–99. J. Hydrometeorol. 10, 60–78 (2009).

    Article  Google Scholar 

  30. Ahlstrøm, A. P. et al. Seasonal velocities of eight major marine-terminating outlet glaciers of the Greenland ice sheet from continuous in situ GPS instruments. Earth Syst. Sci. Data 5, 277–287 (2013).

    Article  Google Scholar 

  31. Joughin, I., Smith, B., Howat, I. & Scambos, T. MEaSUREs Greenland Ice Velocity: Selected Glacier Site Velocity Maps from InSAR (NASA National Snow and Ice Data Center, 2011); http://dx.doi.org/10.5067/MEASURES/CRYOSPHERE/nsidc-0481.001

  32. Joughin, I. et al. Seasonal speedup along the western flank of the Greenland Ice Sheet. Science 320, 781–783 (2008).

    Article  Google Scholar 

  33. Palmer, S., Shepherd, A., Nienow, P. & Joughin, I. Seasonal speedup of the Greenland Ice Sheet linked to routing of surface water. Earth Planet. Sci. Lett. 302, 423–428 (2011).

    Article  Google Scholar 

  34. van de Wal, R. S. W. et al. Large and rapid melt-induced velocity changes in the ablation zone of the Greenland Ice Sheet. Science 321, 111–113 (2008).

    Article  Google Scholar 

  35. Tedstone, A. J. et al. Greenland ice sheet motion insensitive to exceptional meltwater forcing. Proc. Natl Acad. Sci. USA 110, 19719–19724 (2013).

    Article  Google Scholar 

  36. van de Wal, R. S. W. et al. Self-regulation of ice flow varies across the ablation area in south-west Greenland. Cryosphere 9, 603–611 (2015).

    Article  Google Scholar 

  37. Gudmundsson, G. H. et al. High-resolution measurements of spatial and temporal variations in surface velocities of Unteraargletscher, Bernese Alps, Switzerland. Ann. Glaciol. 31, 63–68 (2000).

    Article  Google Scholar 

  38. Burgess, E. W., Larsen, C. F. & Forster, R. R. Summer melt regulates winter glacier flow speeds throughout Alaska. Geophys. Res. Lett. 40, 6160–6164 (2013).

    Article  Google Scholar 

  39. Dow, C. F., Kulessa, B., Rutt, I. C., Doyle, S. H. & Hubbard, A. Upper bounds on subglacial channel development for interior regions of the Greenland ice sheet. J. Glaciol. 60, 1044–1052 (2014).

    Article  Google Scholar 

  40. Dow, C. F. et al. Modeling of subglacial hydrological development following rapid supraglacial lake drainage. J. Geophys. Res. 2014JF003333 (2015).

  41. Doyle, S. H. et al. Persistent flow acceleration within the interior of the Greenland ice sheet. Geophys. Res. Lett. 41, 899–905 (2014).

    Article  Google Scholar 

  42. Bougamont, M. et al. Sensitive response of the Greenland Ice Sheet to surface melt drainage over a soft bed. Nature Commun. 5, 5052 (2014).

    Article  Google Scholar 

  43. Bintanja, R. & Selten, F. M. Future increases in Arctic precipitation linked to local evaporation and sea-ice retreat. Nature 509, 479–482 (2014).

    Article  Google Scholar 

  44. Fettweis, X., Belleflamme, A., Erpicum, M., Franco, B. & Nicolay, S. in Climate Change: Geophysical Foundations and Ecological Effects (eds Blanco, J. & Kheradmand, H.) 503–520 (InTech, 2011).

    Google Scholar 

  45. Franco, B., Fettweis, X. & Erpicum, M. Future projections of the Greenland Ice Sheet energy balance driving the surface melt. Cryosphere 7, 1–18 (2013).

    Article  Google Scholar 

  46. Box, J. E. et al. Greenland ice sheet albedo feedback: Thermodynamics and atmospheric drivers. Cryosphere 6, 821–839 (2012).

    Article  Google Scholar 

  47. IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

    Google Scholar 

  48. King, M. Rigorous GPS data-processing strategies for glaciological applications. J. Glaciol. 50, 601–607 (2004).

    Article  Google Scholar 

  49. Chen, G. GPS Kinematic Positioning for the Airborne Laser Altimetry at Long Valley, California (Massachusetts Institute of Technology, 1998).

    Google Scholar 

  50. Dow, J. M., Neilan, R. E. & Rizos, C. The International GNSS Service in a changing landscape of Global Navigation Satellite Systems. J. Geod. 83, 191–198 (2009).

    Article  Google Scholar 

  51. Den Ouden, M. A. G. et al. Stand-alone single-frequency GPS ice velocity observations on Nordenskioldbreen, Svalbard. Cryosphere 4, 593–604 (2010).

    Article  Google Scholar 

  52. Walter, J. I. et al. Oceanic mechanical forcing of a marine-terminating Greenland glacier. Ann. Glaciol. 53, 181–192 (2012).

    Article  Google Scholar 

  53. Krieger, G. et al. TanDEM-X: A satellite formation for high-resolution SAR interferometry. IEEE Trans. Geosci. Remote Sensing 45, 3317–3341 (2007).

    Article  Google Scholar 

  54. Strozzi, T., Luckman, A., Murray, T., Wegmuller, U. & Werner, C. L. Glacier motion estimation using SAR offset-tracking procedures. IEEE Trans. Geosci. Remote Sensing 40, 2384–2391 (2002).

    Article  Google Scholar 

  55. Joughin, I., Smith, B. E., Howat, I. M., Scambos, T. & Moon, T. Greenland flow variability from ice-sheet-wide velocity mapping. J. Glaciol. 56, 415–430 (2010).

    Article  Google Scholar 

  56. Smeets, C. J. P. P. et al. Instruments and methods—A wireless subglacial probe for deep ice applications. J. Glaciol. 58, 841–848 (2012).

    Article  Google Scholar 

  57. van As, D. et al. Large surface meltwater discharge from the Kangerlussuaq sector of the Greenland ice sheet during the record-warm year 2010 explained by detailed energy balance observations. Cryosphere 6, 199–209 (2012).

    Article  Google Scholar 

  58. van As, D. Warming, glacier melt and surface energy budget from weather station observations in the Melville Bay region of northwest Greenland. J. Glaciol. 57, 208–220 (2011).

    Article  Google Scholar 

  59. Cappelen, J. et al. Weather Observations from Greenland 1958–2012 Technical Report 13-11 (Danish Meteorological Institute, 2013); http://www.dmi.dk/fileadmin/Rapporter/TR/tr13-11.pdf

  60. Alexandersson, H. Korrektion av Nederbord Enligt Enkel Klimatologisk Metodik (Meteorologi Nr 111, SMHI, 2003)

  61. Johansson, E. et al. Hydrological and meteorological investigations in a periglacial lake catchment near Kangerlussuaq, west Greenland—presentation of a new multi-parameter dataset. Earth Syst. Sci. Data 7, 93–108 (2015).

    Article  Google Scholar 

  62. Ambach, W. The influence of cloudiness on the net radiation balance of a snow surface with high albedo. J. Glaciol. 13, 73–84 (1974).

    Article  Google Scholar 

  63. Bennartz, R. et al. July 2012 Greenland melt extent enhanced by low-level liquid clouds. Nature 496, 83–86 (2013).

    Article  Google Scholar 

  64. van den Broeke, M. et al. Partitioning of melt energy and meltwater fluxes in the ablation zone of the west Greenland ice sheet. Cryosphere 2, 179–189 (2008).

    Article  Google Scholar 

  65. Hock, R. Glacier melt: A review of processes and their modelling. Prog. Phys. Geogr. 29, 362–391 (2005).

    Article  Google Scholar 

  66. Pryor, S. C. & Schoof, J. T. Changes in the seasonality of precipitation over the contiguous USA. J. Geophys. Res. 113, D21108 (2008).

    Article  Google Scholar 

  67. Walsh, R. P. D. & Lawler, D. M. Rainfall seasonality: Description, spatial patterns and change through time. Weather 36, 201–208 (1981).

    Article  Google Scholar 

  68. Christensen, O. B. et al. The HIRHAM Regional Climate Model Version 5 Technical Report 06-17 (Danish Meteorological Institute, 2006); http://www.dmi.dk/fileadmin/Rapporter/TR/tr06-17.pdf

  69. Dee, D. P. et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597 (2011).

    Article  Google Scholar 

  70. van de Wal, R. S. W., Greurell, W., van den Broeke, M. R., Reijmer, C. H. & Oerlemans, J. Surface mass-balance observations and automatic weather station data along a transect near Kangerlussuaq, West Greenland. Ann. Glaciol. 42, 311–316 (2005).

    Article  Google Scholar 

  71. Lucas-Picher, P. et al. Very high resolution regional climate model simulations over Greenland: Identifying added value. J. Geophys. Res. 117, D02108 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

This research was financially supported by: SKB/Posiva through the Greenland Analogue Project (GAP); UK National Environment Research Council (NERC) grants NE/G005796/1, NE/G010595/1, NE/H024204/1; a Royal Geographical Society Gilchrist Fieldwork Award; and The Netherlands Organisation for Scientific Research (NOW/PPP)—the last of which generously supported the K-transect measurements. TanDEM-X data were provided by the German Aerospace centre (DLR) within the framework of the XTI_GLAC0433 project. We thank UNAVCO, the National Snow and Ice Data Center, the Danish Meteorological Institute, MIT, J. Cappellen, R. Pettersson, K. Lindback and A. Fitzpatrick for help with data collection and processing. The crew of SV Gambo are thanked for help in the deployment of the Store Glacier GPS. A.H. and H.P. were supported at the Centre for Arctic Gas Hydrate, Environment and Climate by funding from the Research Council of Norway (Grant No. 223259). S.H.D. was supported by an Aberystwyth University doctoral scholarship and NERC grant NE/K006126.

Author information

Authors and Affiliations

Authors

Contributions

A.H., S.H.D., T.W.M. and J.T.H. collected the dual-frequency GPS data. S.H.D. processed the dual-frequency GPS data, collated the data sets, prepared the figures and wrote the original manuscript. R.S.W.v.d.W. and P.C.J.P.S. provided the single-frequency GPS data, and together with F.W. acquired the borehole water pressure record. J.E.B. provided and interpreted the reanalysis data and advised on meteorology. D.v.A. collected and processed the AWS data sets and modelled the surface energy balance. K.S. processed the TanDEM-X data sets. E.J. applied the correction to the precipitation records. R.H.M. performed the HIRHAM5 regional climate modelling. B.H. advised on the analysis of borehole water pressure records and their relationship to ice velocity. H.P. processed the Terra SAR-X data for Jakobshavn Isbræ. P.C. and A.B.M. provided additional advice on data interpretation and analysis. All authors contributed to the subsequent editing of the manuscript. A.H. was the P.I. of the main project that conceived the study and co-developed it with S.H.D.

Corresponding author

Correspondence to Samuel H. Doyle.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 4462 kb)

Supplementary Movie

Supplementary Movie 1 (MOV 7423 kb)

Supplementary Movie

Supplementary Movie 2 (MOV 6938 kb)

Supplementary Movie

Supplementary Movie 3 (MOV 7058 kb)

Supplementary Movie

Supplementary Movie 4 (MOV 9054 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doyle, S., Hubbard, A., van de Wal, R. et al. Amplified melt and flow of the Greenland ice sheet driven by late-summer cyclonic rainfall. Nature Geosci 8, 647–653 (2015). https://doi.org/10.1038/ngeo2482

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2482

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing