Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Sudden spreading of corrosive bottom water during the Palaeocene–Eocene Thermal Maximum

Abstract

The Palaeocene–Eocene Thermal Maximum, approximately 55 million years ago, was a period of rapid warming linked to a massive release of carbon to the ocean–atmosphere system1. This warming event was also marked by widespread dissolution of carbonates at the sea floor2. The acidification of deep waters was generally more extensive and severe in the Atlantic and Caribbean, with more modest changes in the Southern and Pacific oceans3,4,5. Here we use the UVic ESCM global climate model to show that corrosive deep water spreading from the North Atlantic can explain the spatial variations in carbonate dissolution during the Palaeocene–Eocene Thermal Maximum. In our simulations, highly corrosive waters accumulate in the deep North Atlantic at the onset of the event. Several thousand years after an imposed atmospheric carbon release, warming of the deep ocean destabilizes the North Atlantic water column and triggers deep-water formation. This deep convection causes the corrosive bottom water to spill over an equatorial sill into the South Atlantic. The bottom water then spreads through the Southern and Pacific oceans, progressively gaining alkalinity. We conclude that the pattern of sediment dissolution simulated along the path taken by the corrosive water is consistent with most dissolution estimates from the sediment record.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Zonal averages of calcite saturation state Ωcalcite across the Atlantic Basin at five time steps.
Figure 2: Simulated time series averaged horizontally over the rectangular regions shown in Fig. 3b.
Figure 3: Spread of corrosive bottom water from the North Atlantic and subsequent dissolution of seafloor carbonate.

References

  1. Kennett, J. P. & Stott, L. D. Abrupt deep-sea warming, palaeoceanographic changes and benthic extinctions at the end of the Palaeocene. Nature 353, 225–229 (1991).

    Article  Google Scholar 

  2. Zachos, J. C. et al. Rapid acidification of the ocean during the Paleocene–Eocene Thermal Maximum. Science 308, 1611–1615 (2005).

    Article  Google Scholar 

  3. Zeebe, R. E., Zachos, J. C. & Dickens, G. R. Carbon dioxide forcing alone insufficient to explain Palaeocene–Eocene Thermal Maximum warming. Nature Geosci. 2, 576–580 (2009).

    Article  Google Scholar 

  4. Zeebe, R. E. & Zachos, J. C. Reversed deep-sea carbonate ion basin gradient during Paleocene–Eocene thermal maximum. Paleoceanography 22, PA3201 (2007).

    Article  Google Scholar 

  5. Kelly, D. C., Nielsen, T. M. J., McCarren, H. K., Zachos, J. C. & Röhl, U. Spatiotemporal patterns of carbonate sedimentation in the South Atlantic: Implications for carbon cycling during the Paleocene–Eocene thermal maximum. Palaeogeogr. Palaeoclimatol. Palaeoecol. 293, 30–40 (2010).

    Article  Google Scholar 

  6. Zeebe, R. E. & Zachos, J. C. Long-term legacy of massive carbon input to the Earth system: Anthropocene vs. Eocene. Phil. Trans. A 371, 20120006 (2013).

    Article  Google Scholar 

  7. Ridgwell, A. & Schmidt, D. N. Past constraints on the vulnerability of marine calcifiers to massive carbon dioxide release. Nature Geosci. 3, 196–200 (2010).

    Article  Google Scholar 

  8. Hönisch, B. et al. The geological record of ocean acidification. Science 335, 1058–1063 (2012).

    Article  Google Scholar 

  9. Pagani, M. et al. Arctic hydrology during global warming at the Palaeocene/Eocene thermal maximum. Nature 442, 671–675 (2006).

    Article  Google Scholar 

  10. Meissner, K. J. et al. The Paleocene–Eocene Thermal Maximum: How much carbon is enough? Paleoceanography 29, 946–963 (2014).

    Article  Google Scholar 

  11. Panchuk, K., Ridgwell, A. & Kump, L. R. Sedimentary response to Paleocene–Eocene Thermal Maximum carbon release: A model-data comparison. Geology 36, 315–318 (2008).

    Article  Google Scholar 

  12. Cui, Y. et al. Slow release of fossil carbon during the Palaeocene–Eocene Thermal Maximum. Nature Geosci. 4, 481–485 (2011).

    Article  Google Scholar 

  13. Bralower, T. J. et al. Impact of dissolution on the sedimentary record of the Paleocene–Eocene thermal maximum. Earth Planet. Sci. Lett. 401, 70–82 (2014).

    Article  Google Scholar 

  14. Kirtland Turner, S. & Ridgwell, A. Recovering the true size of an Eocene hyperthermal from the marine sedimentary record. Paleoceanography 28, 700–712 (2013).

    Article  Google Scholar 

  15. McCarren, H., Thomas, E., Hasegawa, T., Röhl, U. & Zachos, J. C. Depth dependency of the Paleocene–Eocene carbon isotope excursion: Paired benthic and terrestrial biomarker records (Ocean Drilling Program Leg 208, Walvis Ridge). Geochem. Geophys. Geosyst. 9, Q10008 (2008).

    Article  Google Scholar 

  16. Colosimo, A. B., Bralower, T. J. & Zachos, J. C. Evidence for lysocline shoaling at the Paleocene/Eocene Thermal Maximum on Shatsky Rise, Northwest Pacific. Proc. Ocean Drill. Program, Sci. Results 198, 1–36 (2006).

    Google Scholar 

  17. Bralower, T. J., Meissner, K. J., Alexander, K. & Thomas, D. J. The dynamics of global change at the Paleocene–Eocene thermal maximum: A data-model comparison. Geochem. Geophys. Geosyst. 15, 3830–3848 (2014).

    Article  Google Scholar 

  18. Royer, D. L. et al. Paleobotanical evidence for near present-day levels of atmospheric CO2 during part of the tertiary. Science 292, 2310–2313 (2001).

    Article  Google Scholar 

  19. Pearson, P. N. & Palmer, M. R. Atmospheric carbon dioxide concentrations over the past 60 million years. Nature 406, 695–699 (2000).

    Article  Google Scholar 

  20. Pagani, M., Caldeira, K., Archer, D. & Zachos, J. C. An ancient carbon mystery. Science 314, 1556–1557 (2006).

    Article  Google Scholar 

  21. Waddell, L. M. & Moore, T. C. Salinity of the Eocene Arctic Ocean from oxygen isotope analysis of fish bone carbonate. Paleoceanography 23, PA1S12 (2008).

    Article  Google Scholar 

  22. Panchuk, K. M. Investigating the Paleocene–Eocene Carbon Cycle Perturbation: An Earth System Model Approach PhD thesis, Pennsylvania State University (2007)

  23. Pälike, C., Delaney, M. L. & Zachos, J. C. Deep-sea redox across the Paleocene–Eocene Thermal Maximum. Geochem. Geophys. Geosyst. 15, 1038–1053 (2014).

    Article  Google Scholar 

  24. Dunkley Jones, T. et al. Climate model and proxy data constraints on ocean warming across the Paleocene–Eocene Thermal Maximum. Earth Sci. Rev. 125, 123–145 (2013).

    Article  Google Scholar 

  25. Bornemann, A. et al. Persistent environmental change after the Paleocene–Eocene Thermal Maximum in the eastern North Atlantic. Earth Planet. Sci. Lett. 394, 70–81 (2014).

    Article  Google Scholar 

  26. Katz, M. E., Pak, D. K., Dickens, G. R. & Miller, K. G. The source and fate of massive carbon input during the latest Paleocene Thermal Maximum. Science 286, 1531–1533 (1999).

    Article  Google Scholar 

  27. Nunes, F. & Norris, R. D. Abrupt reversal in ocean overturning during the Palaeocene/Eocene warm period. Nature 439, 60–63 (2006).

    Article  Google Scholar 

  28. Thomas, D. J., Bralower, T. J. & Jones, C. E. Neodymium isotopic reconstruction of late Paleocene–early Eocene thermohaline circulation. Earth Planet. Sci. Lett. 209, 309–322 (2003).

    Article  Google Scholar 

  29. Bice, K. L. & Marotzke, J. Could changing ocean circulation have destabilized methane hydrate at the Paleocene/Eocene boundary? Paleoceanography 17, 8.1–8.12 (2002).

    Article  Google Scholar 

  30. Weaver, A. J. et al. The UVic earth system climate model: Model description, climatology, and applications to past, present and future climates. Atmosphere-Ocean 39, 361–428 (2001).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the NSERC CREATE training program in interdisciplinary climate science at the University of Victoria, the ARC Centre of Excellence for Climate System Science, the ARC Future Fellowship program (FT100100443 to K.J.M.), the Australian-American Fulbright Commission, the US National Science Foundation (EAR 06-28394 and OCE 14-16663 to T.J.B.), and an award under the Merit Allocation Scheme on the NCI National Facility at the Australian National University. We are grateful to T. D. Jones for assisting with the calculation of palaeolocations for each drilling site, to D. Thomas and J. Zachos for input on sedimentary data, and to Y. Cui and P. Valdes for their comments on an earlier version of this manuscript. Figure 3a was created with the assistance of A. Davies.

Author information

Authors and Affiliations

Authors

Contributions

K.J.M. and T.J.B. conceived and designed the model simulations, K.J.M. performed the simulations, and K.A. and K.J.M. analysed the results. T.J.B. provided the sedimentary data and analysis. K.A. and T.J.B. wrote the paper.

Corresponding author

Correspondence to Kaitlin Alexander.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1105 kb)

Supplementary Information

Supplementary Information (GIF 2775 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alexander, K., J. Meissner, K. & J. Bralower, T. Sudden spreading of corrosive bottom water during the Palaeocene–Eocene Thermal Maximum. Nature Geosci 8, 458–461 (2015). https://doi.org/10.1038/ngeo2430

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2430

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing