Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Low friction and fault weakening revealed by rising sensitivity of tremor to tidal stress

Abstract

At subduction zones, the level of friction on the deep part of the plate boundary fault controls stress accumulation and release, which govern the transfer of stress to the shallower, locked part of the fault that can slip in a megathrust earthquake. In some subduction zones, the deep fault slips slowly, at speeds far less than shallower, regular earthquakes, and is often accompanied by weak seismic waves called tremor. Tremor and slow slip can be triggered by small stress changes induced by ocean or solid Earth tides. Here I use seismic data combined with calculations of tidal stress to determine the influence of tides on 31,000 tremors generated by six large slow-slip events in Cascadia between 2007 and 2012. I find that the sensitivity of tremor to tidal stresses rises during each slip event, as slip at each spot on the fault accumulates. Specifically, tremor rate is an exponential function of tidal stress, and this exponential sensitivity grows for several days, implying that the fault weakens during slip. I use the relationship between tidal stress and tremor to calculate a coefficient of intrinsic friction for the fault and find values of 0 to 0.1, which indicate that the deep fault is inherently weak.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Consistency of tremor with sense of tidal stress.
Figure 2: Evolution of tremor response to tides.
Figure 3: Influence on tremor of shear versus normal stress changes.
Figure 4: Pore-pressure models and friction coefficient.
Figure 5: Model of stress and strength evolution during ETS.

Similar content being viewed by others

References

  1. Obara, K. Nonvolcanic deep tremor associated with subduction in southwest Japan. Science 296, 1679–1681 (2002).

    Article  Google Scholar 

  2. Rogers, G. & Dragert, H. Episodic tremor and slip on the Cascadia subduction zone: The chatter of silent slip. Science 300, 1942–1943 (2003).

    Article  Google Scholar 

  3. Ide, S., Beroza, G., Shelly, D. & Uchide, T. A scaling law for slow earthquakes. Nature 447, 76–79 (2007).

    Article  Google Scholar 

  4. Houston, H., Delbridge, B., Wech, A. & Creager, K. Rapid tremor reversals in Cascadia generated by a weakened plate interface. Nature Geosci. 4, 404–409 (2011).

    Article  Google Scholar 

  5. Rubin, A. Designer friction laws for bimodal slow slip propagation speeds. Geochem. Geophys. Geosyst. 12, Q04007 (2011).

    Article  Google Scholar 

  6. Shelly, D., Beroza, G. & Ide, S. Non-volcanic tremor and low-frequency earthquake swarms. Nature 446, 305–307 (2007).

    Article  Google Scholar 

  7. Hirose, H. & Obara, K. Short-term slow slip and correlated tremor episodes in the Tokai region, central Japan. Geophys. Res. Lett. 33, L17311 (2006).

    Article  Google Scholar 

  8. Dragert, H., Wang, K. L. & James, T. S. A silent slip event on the deeper Cascadia subduction interface. Science 292, 1525–1528 (2001).

    Article  Google Scholar 

  9. Nishimura, T., Matsuzawa, T. & Obara, K. Detection of short-term slow slip events along the Nankai Trough, southwest Japan, using GNSS data. J. Geophys. Res. 118, 3112–3125 (2013).

    Article  Google Scholar 

  10. Hirose, H. & Obara, K. Repeating short- and long-term slow slip events with deep tremor activity around the Bungo Channel region, southwest Japan. Earth Planets Space 57, 961–972 (2005).

    Article  Google Scholar 

  11. Miyazaki, S., Segall, P., McGuire, J. J., Kato, T. & Hatanaka, Y. Spatial and temporal evolution of stress and slip rate during the 2000 Tokai slow earthquake. J. Geophys. Res. 111, B03409 (2006).

    Google Scholar 

  12. McCaffrey, R., Wallace, L. M. & Beavan, J. Slow slip and frictional transition at low temperature at the Hikurangi subduction zone. Nature Geosci. 1, 316–320 (2008).

    Article  Google Scholar 

  13. Ozawa, S., Suito, H. & Tobita, M. Occurrence of quasi-periodic slow-slip off the east coast of the Boso Peninsula, Central Japan. Earth Planets Space 59, 1241–1245 (2007).

    Article  Google Scholar 

  14. Brudzinski, M. R. & Allen, R. M. Segmentation in episodic tremor and slip all along Cascadia. Geology 35, 907–910 (2007).

    Article  Google Scholar 

  15. Houston, H. Influence of depth, focal mechanism, and tectonic setting on the shape and duration of earthquake source time functions. J. Geophys. Res. 106, 11137–11150 (2001).

    Article  Google Scholar 

  16. Rubinstein, J., La Rocca, M., Vidale, J., Creager, K. & Wech, A. Tidal modulation of nonvolcanic tremor. Science 319, 186–189 (2008).

    Article  Google Scholar 

  17. Nakata, R., Suda, N. & Tsuruoka, H. Non-volcanic tremor resulting from the combined effect of Earth tides and slow slip events. Nature Geosci. 1, 676–678 (2008).

    Article  Google Scholar 

  18. Lambert, A., Kao, H., Rogers, G. & Courtier, N. Correlation of tremor activity with tidal stress in the northern Cascadia subduction zone. J. Geophys. Res. 114, B00A08 (2009).

    Google Scholar 

  19. Thomas, A., Nadeau, R. & Burgmann, R. Tremor-tide correlations and near-lithostatic pore pressure on the deep San Andreas Fault. Nature 462, 1048–1051 (2009).

    Article  Google Scholar 

  20. Hawthorne, J. & Rubin, A. Tidal modulation of slow slip in Cascadia. J. Geophys. Res. 115, B007502 (2010).

    Article  Google Scholar 

  21. Thomas, T. et al. Evidence for tidal triggering of high-amplitude rapid tremor reversals and tremor streaks in northern Cascadia. Geophys. Res. Lett. 40, 4254–4259 (2013).

    Article  Google Scholar 

  22. Wech, A. G. & Creager, K. C. Automated detection and location of Cascadia tremor. Geophys. Res. Lett. 35, L20302 (2008).

    Article  Google Scholar 

  23. Sweet, J. R. Unlocking the secrets of slow slip in Cascadia using low-frequency earthquakes. PhD thesis, Univ. Washington (2014)

  24. Royer, A. A., Thomas, A. M. & Bostock, M. G. Tidal modulation and triggering of low-frequency earthquakes in northern Cascadia. J. Geophys. Res. 120, 384–405 (2015).

    Article  Google Scholar 

  25. Beeler, N. M., Thomas, A., Burgmann, R. & Shelly, D. Inferring fault rheology from low-frequency earthquakes on the San Andreas. J. Geophys. Res. 118, 5976–5990 (2013).

    Article  Google Scholar 

  26. Beeler, N. M., Simpson, R. W., Hickman, S. H. & Lockner, D. A. Pore fluid pressure, apparent friction, and Coulomb failure. J. Geophys. Res. 105, 25533–25542 (2000).

    Article  Google Scholar 

  27. Cocco, M. & Rice, J. Pore pressure and poroelasticity effects in Coulomb stress analysis of earthquake interactions. J. Geophys. Res. 107, 2030 (2002).

    Article  Google Scholar 

  28. Paterson, M. S. & Wong, T-f. Experimental Rock Deformation—The Brittle Field 2nd edn (Springer, 2005).

    Google Scholar 

  29. Ingebritsen, S. E. & Manning, C. E. Permeability of the continental crust: Dynamic variations inferred from seismicity and metamorphism. Geofluids 10, 193–205 (2010).

    Google Scholar 

  30. Sone, H., Shimamoto, T. & Moore, D. E. Frictional properties of saponite-rich gouge from a serpentinite-bearing fault zone along the Gokasho-Arashima Tectonic Line, central Japan. J. Struct. Geol. 38, 172–182 (2012).

    Article  Google Scholar 

  31. Audet, P., Bostock, M. G., Christensen, N. I. & Peacock, S. M. Seismic evidence for overpressured subducted oceanic crust and megathrust fault sealing. Nature 457, 76–78 (2009).

    Article  Google Scholar 

  32. Endres, A. L. Geometrical models for poroelastic behaviour. Geophys. J. Int. 128, 522–532 (1997).

    Article  Google Scholar 

  33. Ide, S. & Tanaka, Y. Controls on plate motion by oscillating tidal stress: Evidence from deep tremors in western Japan. Geophys. Res. Lett. 41, 3842–3850 (2014).

    Article  Google Scholar 

  34. Fulton, P. M. et al. Low coseismic friction on the Tohoku-Oki Fault determined from temperature measurements. Science 342, 1214–1217 (2013).

    Article  Google Scholar 

  35. Moore, D. E. & Rymer, M. J. Talc-bearing serpentinite and the creeping section of the San Andreas Fault. Nature 448, 795–797 (2007).

    Article  Google Scholar 

  36. Moore, D. E. & Rymer, M. J. Correlation of clayey gouge in a surface exposure of serpentinite in the San Andreas Fault with gouge from the San Andreas Fault Observatory at Depth (SAFOD). J. Struct. Geol. 38, 51–60 (2012).

    Article  Google Scholar 

  37. Hirauchi, K., den Hartog, S. A. M. & Spiers, C. J. Weakening of the slab-mantle wedge interface induced by metasomatic growth of talc. Geology 41, 75–78 (2013).

    Article  Google Scholar 

  38. Oohashi, K., Hirose, T. & Shimamoto, T. Graphite as a lubricating agent in fault zones: An insight from low- to high-velocity friction experiments on a mixed graphite-quartz gouge. J. Geophys. Res. 118, 2067–2084 (2013).

    Article  Google Scholar 

  39. Schleicher, A. M., van der Pluijm, B. A. & Warr, L. N. Nanocoatings of clay and creep of the San Andreas Fault at Parkfield, California. Geology 38, 667–670 (2010).

    Article  Google Scholar 

  40. Audet, P. & Burgmann, R. Possible control of subduction zone slow-earthquake periodicity by silica enrichment. Nature 510, 389–392 (2014).

    Article  Google Scholar 

  41. McCrory, P., Blair, J., Waldhauser, F. & Oppenheimer, D. Juan de Fuca slab geometry and its relation to Wadati-Benioff zone seismicity. J. Geophys. Res. 117, B009407 (2012).

    Article  Google Scholar 

  42. Shelly, D., Beroza, G., Ide, S. & Nakamula, S. Low-frequency earthquakes in Shikoku, Japan, and their relationship to episodic tremor and slip. Nature 442, 188–191 (2006).

    Article  Google Scholar 

  43. La Rocca, M. et al. Cascadia tremor located near plate interface constrained by S minus P wave times. Science 323, 620–623 (2009).

    Article  Google Scholar 

  44. Kao, H. et al. A wide depth distribution of seismic tremors along the northern Cascadia margin. Nature 436, 841–844 (2005).

    Article  Google Scholar 

  45. Agnew, D. C. NLOADF: A program for computing ocean-tide loading. J. Geophys. Res. 102, 5109–5110 (1997).

    Article  Google Scholar 

  46. Schmidt, D. A. & Gao, H. Source parameters and time-dependent slip distributions of slow slip events on the Cascadia subduction zone from 1998 to 2008. J. Geophys. Res. 115, B00A18 (2010).

    Google Scholar 

  47. Wech, A. G., Creager, K. C. & Melbourne, T. I. Seismic and geodetic constraints on Cascadia slow slip. J. Geophys. Res. 114, B10316 (2009).

    Article  Google Scholar 

  48. Wong, T-f., Wong, R. H. C., Chau, K. T. & Tang, C. A. Microcrack statistics, Weibull distribution and micromechanical modeling of compressive failure in rock. Mech. Mater. 38, 664–681 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

I thank J. Hawthorne for assistance with calculations of tidal stresses, S. Ide for suggesting the use of a Weibull distribution, and J. Vidale and K. Creager for helpful suggestions. Reviews from R. Burgmann and the Editor helped improve the paper. This work was supported by NSF grant EAR-1447005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heidi Houston.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 828 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Houston, H. Low friction and fault weakening revealed by rising sensitivity of tremor to tidal stress. Nature Geosci 8, 409–415 (2015). https://doi.org/10.1038/ngeo2419

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2419

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing