Presence of oxygen and aerobic communities from sea floor to basement in deep-sea sediments

Journal name:
Nature Geoscience
Year published:
Published online

The depth of oxygen penetration into marine sediments differs considerably from one region to another1, 2. In areas with high rates of microbial respiration, O2 penetrates only millimetres to centimetres into the sediments3, but active anaerobic microbial communities are present in sediments hundreds of metres or more below the sea floor4, 5, 6, 7. In areas with low sedimentary respiration, O2 penetrates much deeper8, 9, 10, 11, 12 but the depth to which microbial communities persist was previously unknown9, 10, 13. The sediments underlying the South Pacific Gyre exhibit extremely low areal rates of respiration9. Here we show that, in this region, microbial cells and aerobic respiration persist through the entire sediment sequence to depths of at least 75 metres below sea floor. Based on the Redfield stoichiometry of dissolved O2 and nitrate, we suggest that net aerobic respiration in these sediments is coupled to oxidation of marine organic matter. We identify a relationship of O2 penetration depth to sedimentation rate and sediment thickness. Extrapolating this relationship, we suggest that oxygen and aerobic communities may occur throughout the entire sediment sequence in 15–44% of the Pacific and 9–37% of the global sea floor. Subduction of the sediment and basalt from these regions is a source of oxidized material to the mantle.

At a glance


  1. IODP Expedition 329 site locations.
    Figure 1: IODP Expedition 329 site locations.

    Grey scale in base map shows time-averaged sea surface chlorophyll-a concentrations (Global SeaWiFS Chlorophyll (mean of September 1997–December 2004)). Coloured dots mark site locations: U1365 (orange), U1366 (light blue), U1367 (pink), U1368 (green), U1369 (red), U1370 (dark blue) and U1371 (black). Coloured lines mark site palaeopositions, with tiny dots marking site locations at 20-Myr increments. Sites U1365–U1370 are located within the oligotrophic SPG and U1371 is located south of the SPG. White dots mark drill sites where life in deep sub-seafloor sediment has previously been examined.

  2. Sedimentary profiles of cell abundance and chemical concentrations.
    Figure 2: Sedimentary profiles of cell abundance and chemical concentrations11.

    Data are keyed to site location colours in Fig. 1: a, cell concentration (logarithmic scales), b, dissolved O2, c, dissolved NO3, d, dissolved PO4, e, dissolved inorganic carbon, f, total organic carbon. Profiles span the sediment column, from sea floor to basement. Vertical line in a marks the minimum quantification limit (MQL). Because optode-based O2 measurements are less noisy than electrode-based measurements, O2 profiles in b are limited to optode data except where sedimentary fabric prevented optode deployment (the lowermost portion of U1367, as well as most of U1368 and U1371).

  3. Net O2 reaction rates in sediment at SPG sites.
    Figure 3: Net O2 reaction rates in sediment at SPG sites.

    Dark blue lines represent mean net O2 reduction rates and light blue boxes represent first standard deviations of mean rates (Supplementary Information). Net reaction rates are indistinguishable from zero where the first standard deviation intersects the left side of the panel. Vertical lines of open dots with blue margins (circles) mark intervals where net O2 reduction seems to be negative, but is indistinguishable from zero (Supplementary Information). We did not calculate reaction rates for intervals that lack optode data (for example, the entire sequence at Site U1368) or are disturbed by drilling.

  4. Regions where dissolved O2 and aerobic activity may occur throughout the sediment.
    Figure 4: Regions where dissolved O2 and aerobic activity may occur throughout the sediment.

    Dark blue marks the minimum regions and light blue marks the maximum regions (Supplementary Information). Red dots indicate sites where O2 is known to occur throughout the sediment9, 11, 19. Black dots indicate sites where O2 disappears centimetres to metres below the sea floor5, 10, 12. Yellow dots indicate sites where O2 penetrates many mbsf and may penetrate to basement but is not characterized throughout the sediment column9, 10, 19. Dissolved O2 may be present in the basement over a greater area, due to seawater advection through the basement.


  1. Emerson, S., Fischer, K., Reimers, C. & Heggie, D. Organic carbon dynamics and preservation in deep-sea sediments. Deep-Sea Res. 32, 121 (1985).
  2. Jahnke, R. A., Heggie, D., Emerson, S. & Grundmanis, V. Pore waters of the central Pacific Ocean: Nutrient results. Earth Planet. Sci. Lett. 61, 233256 (1982).
  3. Revsbech, N. P., Jørgensen, B. B. & Blackburn, T. H. Oxygen in the sea bottom measured with a microelectrode. Science 207, 13551356 (1980).
  4. Parkes, R. J. et al. Deep bacterial biosphere in Pacific Ocean sediments. Nature 371, 410413 (1994).
  5. D’Hondt, S. et al. Distributions of microbial activities in deep subseafloor sediments. Science 306, 22162221 (2004).
  6. Inagaki, F. et al. Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments on the Pacific Ocean Margin. Proc. Natl Acad. Sci. USA 103, 28152820 (2006).
  7. Lomstein, B. A., Langerhuus, A. T., D’Hondt, S., Jørgensen, B. B. & Spivack, A. J. Spore abundance, microbial growth and necromass turnover in deep subseafloor sediment. Nature 484, 101104 (2012).
  8. Murray, J. W. & Grundmanis, V. Oxygen consumption in pelagic marine sediments. Science 209, 15271530 (1980).
  9. D’Hondt, S. et al. Subseafloor sedimentary life in the South Pacific Gyre. Proc. Natl Acad. Sci. USA 106, 1165111656 (2009).
  10. Røy, H. et al. Aerobic microbial respiration in 86-million-year-old deep-sea red clay. Science 336, 922925 (2012).
  11. D’Hondt, S., Inagaki, F. & Alvarez Zarikian, C. A. Proc. IODP 329 (Integrated Ocean Drilling Program Management International, 2011).
  12. Orcutt, B. N. et al. Oxygen consumption rates in subseafloor basaltic crust derived from a reaction transport model. Nature Commun. 4, 2539 (2013).
  13. Morita, R. Y. & Zobell, C. E. Occurrence of bacteria collected during the Mid-Pacific Expedition. Deep-Sea Res. 3, 6673 (1955).
  14. Jahnke, R. A. The global ocean flux of particulate organic carbon: Areal distribution and magnitude. Glob. Biogeochem. Cycles 10, 7188 (1996).
  15. Kallmeyer, J., Pockalny, R., Adhikari, R., Smith, D. C. & D’Hondt, S. Global distribution of subseafloor sedimentary biomass. Proc. Natl Acad. Sci. USA 109, 1621316216 (2012).
  16. Hedges, J. I. et al. Sedimentary organic matter preservation: A test for selective degradation under oxic conditions. Am. J. Sci. 299, 529555 (1999).
  17. Hensen, C. & Zabel, M. in Marine Geochemistry (eds Schulz, H. D. & Zabel, M.) 209231 (Springer, 2000).
  18. Anderson, L. A. & Sarmiento, J. L. Global ocean phosphate and oxygen simulations. Glob. Biogeochem. Cycles 9, 621636 (1995).
  19. Gieskes, J. M. & Boulegue, J. Interstitial water studies, Leg-92. Init. Rep. Deep Sea Drill. Proj. 92, 423429 (1986).
  20. Blair, C. C., D’Hondt, S., Spivack, A. J. & Kingsley, R. H. Potential of radiolytic hydrogen for microbial respiration in subseafloor sediments. Astrobiology 7, 951970 (2007).
  21. D’ Hondt, S., Rutherford, S. & Spivack, A. J. Metabolic activity of subsurface life in deep-sea sediments. Science 295, 20672070 (2002).
  22. Middelburg, J. J. A simple rate model for organic matter decomposition in marine sediments. Geochim. Cosmochim. Acta 53, 15771581 (1989).
  23. Einstein, A. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Phys. 17, 549560 (1905); Cowper A. D. Investigations on the theory of Brownian movement (Dover Publications, 1926) (English transl.);
  24. Heath, G. R., Moore, T. C. Jr & Dauphin, J. P. in The Fate of Fossil Fuel CO2 in the Oceans (eds Andersen, N. R. & Malahoff, A.) 605625 (Plenum Press, 1977).
  25. Evans, K. A. The redox budget of subduction zones. Earth Sci. Rev. 113, 1132 (2012).
  26. Kelley, K. A. & Cottrell, E. Water and the oxidation state of subduction zone magmas. Science 325, 605607 (2009).
  27. Sleep, N. H., Bird, D. K. & Pope, E. C. Paleontology of Earth’s Mantle. Annu. Rev. Earth Planet. Sci. 40, 277300 (2012).
  28. Wang, G., Spivack, A. J., Rutherford, S., Manor, U. & D’Hondt, S. Quantification of co-occurring reaction rates in deep subseafloor sediments. Geochim. Cosmochim. Acta 72, 34793488 (2008).
  29. Laske, G. & Masters, G. A. A global digital map of sediment thickness. EOS Trans. AGU 78, F483 (1997).
  30. Divins, D. L. NGDC Total Sediment Thickness of the World’s Oceans and Marginal Seas (NOAA, 2008).

Download references

Author information


  1. Integrated Ocean Drilling Program Expedition 329 Shipboard Scientific Party

    • Steven D’Hondt,
    • Fumio Inagaki,
    • Carlos Alvarez Zarikian,
    • Nathalie Dubois,
    • Tim Engelhardt,
    • Helen Evans,
    • Timothy Ferdelman,
    • Britta Gribsholt,
    • Robert N. Harris,
    • Bryce W. Hoppie,
    • Jung-Ho Hyun,
    • Jens Kallmeyer,
    • Jinwook Kim,
    • Jill E. Lynch,
    • Satoshi Mitsunobu,
    • Yuki Morono,
    • Richard W. Murray,
    • Takaya Shimono,
    • Fumito Shiraishi,
    • David C. Smith,
    • Christopher E. Smith-Duque,
    • Arthur J. Spivack,
    • Bjorn Olav Steinsbu,
    • Yohey Suzuki,
    • Michal Szpak,
    • Laurent Toffin,
    • Goichiro Uramoto,
    • Yasuhiko T. Yamaguchi,
    • Guo-liang Zhang,
    • Xiao-Hua Zhang &
    • Wiebke Ziebis
  2. Graduate School of Oceanography, University of Rhode Island, 215 South Ferry Road Narragansett, Rhode Island 02882, USA

    • Steven D’Hondt,
    • Robert Pockalny,
    • Justine Sauvage,
    • David C. Smith &
    • Arthur J. Spivack
  3. Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology, Monobe B200, Nankoku Kochi 783-8502, Japan

    • Fumio Inagaki,
    • Yuki Morono &
    • Goichiro Uramoto
  4. International Ocean Discovery Program, Texas A&M University, 1000 Discovery Drive, College Station Texas 77845-9547, USA

    • Carlos Alvarez Zarikian &
    • Helen Evans
  5. Center for Marine Science, University of North Carolina at Wilmington, 5600 Marvin K. Moss Lane Wilmington, North Carolina 28409, USA

    • Lewis J. Abrams
  6. Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133 8600 Duebendorf, Switzerland

    • Nathalie Dubois
  7. Institut für Chemie und Biologie Des Meeres, Carl von Ossietzky Universität Oldenburg, Oldenburg 26129, Germany

    • Tim Engelhardt
  8. Department of Biogeochemistry, Max-Planck-Institute of Marine Microbiology, Celsiusstrasse 1, 28359 Bremen, Germany

    • Timothy Ferdelman
  9. Center for Geomicrobiology, Aarhus Universitet, Ny Munkegade 114, Building 1540 8000 Aarhus, Denmark

    • Britta Gribsholt
  10. College of Earth, Oceanic, and Atmospheric Sciences, Oregon State University, 104 COAS Admin Building Corvallis, Oregon 97331-5503, USA

    • Robert N. Harris
  11. Minnesota State University, Mankato, Department of Chemistry and Geology, Ford Hall 241, Mankato Minnesota 56001, USA

    • Bryce W. Hoppie
  12. Department of Marine Sciences and Convergent Technology, Hanyang University, 1271 Sa-3 dong, Ansan Gyeonggi-do 426-791, Korea

    • Jung-Ho Hyun
  13. GFZ German Research Centre for Geosciences, Section 4.5 Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany

    • Jens Kallmeyer
  14. Earth Systems Sciences, Yonsei University, 134 Shinchon dong 120-749 Seoul, Korea

    • Jinwook Kim
  15. School of Earth Sciences, University of Melbourne, McCoy Building Melbourne, Victoria 3010, Australia

    • Jill E. Lynch
  16. Department of Oceanography, Texas A&M University, College Station Texas 77843, USA

    • Claire C. McKinley
  17. Institute for Environmental Sciences, Shizuoka University, 52-1 Yada Suruuga-ku, Shizuoka 422-8526, Japan

    • Satoshi Mitsunobu
  18. Department of Earth and Environment, Boston University, 675 Commonwealth Avenue Boston, Massachusetts 02215, USA

    • Richard W. Murray
  19. Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai Tsukuba, Ibaraki 305-8572, Japan

    • Takaya Shimono
  20. Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima Hiroshima 739-8526, Japan

    • Fumito Shiraishi
  21. National Oceanography Centre, University of Southampton, European Way Southampton SO14 3ZH, UK

    • Christopher E. Smith-Duque
  22. Department of Earth Science, University of Bergen, Allegaten 41 5007 Bergen, Norway

    • Bjorn Olav Steinsbu
  23. Earth and Planetary Science Department, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033, Japan

    • Yohey Suzuki &
    • Yasuhiko T. Yamaguchi
  24. School of Chemical Sciences, Dublin City University, Collins Avenue Glasnevin, Dublin 9, Ireland

    • Michal Szpak
  25. Institut Français de Recherche pour l’Exploitation de la Mer, Centre Bretagne, CS 10070 29280 Plouzané, France

    • Laurent Toffin
  26. South China Sea Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Shinan Region Qingdao 266071, China

    • Guo-liang Zhang
  27. College of Marine Life Sciences, Ocean University of China, 5 Yushan Road Qingdao 266003, China

    • Xiao-Hua Zhang
  28. Department of Biological Sciences, University of Southern California, 3616 Trousdale Boulevard, AHF 335 Los Angeles, California 90089, USA

    • Wiebke Ziebis


S.D’H. and F.I. led IODP Expedition 329. C.A.Z. managed the Expedition 329 project. S.D’H., F.I., T.F., R.P. and A.J.S. designed the study. L.J.A., N.D., T.E., H.E., T.F., B.G., R.N.H., B.W.H., J-H.H., J.Kallmeyer, J.Kim, J.E.L., C.C.M., S.M., Y.M., R.W.M., R.P., J.S., T.S., F.S., C.E.S-D., D.C.S., A.J.S., B.O.S., Y.S., M.S., L.T., G.U., Y.T.Y., G-I.Z., X-H.Z. and W.Z. collected and analysed samples and data. S.D’H. wrote the manuscript with significant input from F.I., T.F., J.Kallmeyer, R.W.M., Y.M., R.P., J.S. and A.J.S.

Competing financial interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to:

Author details

Supplementary information

PDF files

  1. Supplementary Information (2,400 KB)

    Supplementary Information

Additional data