Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cratonic root beneath North America shifted by basal drag from the convecting mantle

Abstract

Stable continental cratons are the oldest geologic features on the planet. They have survived 3.8 to 2.5 billion years of Earth’s evolution1,2. The key to the preservation of cratons lies in their strong and thick lithospheric roots, which are neutrally or positively buoyant with respect to surrounding mantle3,4. Most of these Archaean-aged cratonic roots are thought to have remained stable since their formation and to be too viscous to be affected by mantle convection2,3,5. Here we use a combination of gravity, topography, crustal structure and seismic tomography data to show that the deepest part of the craton root beneath the North American Superior Province has shifted about 850 km to the west–southwest relative to the centre of the craton. We use numerical model simulations to show that this shift could have been caused by basal drag induced by mantle flow, implying that mantle flow can alter craton structure. Our observations contradict the conventional view of cratons as static, non-evolving geologic features. We conclude that there could be significant interaction between deep continental roots and the convecting mantle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effect of compositional density variations in the uppermost mantle.
Figure 2: Compositional density variations in the upper mantle.
Figure 3: Calculated plate and mantle flow velocities.

Similar content being viewed by others

References

  1. Yuan, H. & Romanowicz, B. Lithospheric layering in the North American Craton. Nature 466, 1063–1068 (2010).

    Article  Google Scholar 

  2. Lee, C.-T. A., Luffi, P. & Chin, E. J. Building and destroying continental mantle. Annu. Rev. Earth Planet. Sci. 39, 59–90 (2011).

    Article  Google Scholar 

  3. Carlson, R. W., Pearson, D. G. & James, D. E. Physical chemical, and chronological characteristics of continental mantle. Rev. Geophys. 43, RG1001 (2005).

    Article  Google Scholar 

  4. Eaton, D. W. & Perry, H. K. C. Ephemeral isopycnicity of cratonic mantle keels. Nature Geosci. 6, 967–970 (2013).

    Article  Google Scholar 

  5. Pearson, D. G., Carlson, R. W., Shirley, S. B., Boyd, F. R. & Nixon, P. H. Stabilization of Archean lithospheric mantle: A Re–Os isotopic study of peridotite xenoliths from the Kaapvaal Craton. Earth Planet. Sci. Lett. 134, 341–357 (1995).

    Article  Google Scholar 

  6. Goes, S. & van der Lee, S. Thermal structure of the North American uppermost mantle inferred from seismic tomography. J. Geophys. Res. 107, ETG 2-1–ETG 2-13 (2002).

    Article  Google Scholar 

  7. Bokelmann, G. H. R. Convection-driven motion of the North American Craton: Evidence from P-wave anisotropy. Geophys. J. Int. 148, 278–287 (2002).

    Google Scholar 

  8. Eaton, D. W. & Frederiksen, A. Seismic evidence for convection-driven motion of the North American plate. Nature 446, 428–431 (2007).

    Article  Google Scholar 

  9. Mooney, W. D. & Kaban, M. K. The North American upper mantle: Density, composition, and evolution. J. Geophys. Res. 115, B12424 (2010).

    Article  Google Scholar 

  10. Petrunin, A. G., Kaban, M. K., Rogozhina, I. & Trubitsyn, V. Revising the spectral method as applied to modeling mantle dynamics. Geochem. Geophys. Geosyst. 14, 3691–3702 (2013).

    Article  Google Scholar 

  11. Sella, G. F., Dixon, T. H. & Mao, A. REVEL a model for recent plate velocities from space geodesy. J. Geophys. Res. 107, ETG 11-1–ETG 11-30 (2002).

    Article  Google Scholar 

  12. Conrad, C. P. & Lithgow-Bertelloni, C. Influence of continental roots and asthenosphere on plate-mantle coupling. Geophys. Res. Lett. 33, L05312 (2006).

    Article  Google Scholar 

  13. Yoshida, M. Temporal evolution of the stress state in a supercontinent during mantle reorganization. Geophys. J. Int. 180, 1–22 (2010).

    Article  Google Scholar 

  14. Heaman, L. M., Kjarsgaard, B. A. & Creaser, R. A. The timing of kimberlite magmatism in North America: Implications for global kimberlite genesis and diamond exploration. Lithos 71, 153–184 (2003).

    Article  Google Scholar 

  15. Calais, E., Han, J. Y., DeMets, C. & Nocquet, J. M. Deformation of the North American plate interior from a decade of continuous GPS measurements. J. Geophys. Res. 111, B06402 (2006).

    Article  Google Scholar 

  16. Steinberger, B. & O’Connell, R. J. Advection of plumes in mantle flow: Implications for hotspot motion, mantle viscosity and plume distribution. Geophys. J. Int. 132, 412–434 (1998).

    Article  Google Scholar 

  17. Obrebski, M., Allen, R. M., Pollitz, F. & Hung, S.-H. Lithosphere–asthenosphere interaction beneath the western United States from the joint inversion of body-wave traveltimes and surface-wave phase velocities. Geophys. J. Int. 185, 1003–1021 (2011).

    Article  Google Scholar 

  18. Artemieva, I. M. & Mooney, W. D. Thermal thickness and evolution of Precambrian lithosphere: A global study. J. Geophys. Res. 106, 16387–16414 (2001).

    Article  Google Scholar 

  19. Jones, A. G. et al. Electric lithosphere of the Slave Craton. Geology 29, 423–426 (2001).

    Article  Google Scholar 

  20. Eaton, D. W. et al. The elusive lithosphere–asthenosphere boundary beneath cratons. Lithos 109, 1–22 (2009).

    Article  Google Scholar 

  21. Poudjom Djomani, Y. H., O’Reilly, S. Y., Griffn, W. L. & Morgan, P. The density structure of subcontinental lithosphere through time. Earth Planet. Sci. Lett. 184, 605–621 (2001).

    Article  Google Scholar 

  22. Griffin, W. L., Andi, Z., O’Reilly, S. Y. & Ryan, C. G. Phanerozoic evolution of the lithosphere beneath the Sino-Korean Craton. Mantle Dyn. Plate Interact. East Asia 27, 107–126 (1998).

    Article  Google Scholar 

  23. Cooper, C. M. & Conrad, C. P. Does the mantle control the maximum thickness of cratons? Lithosphere 1, 67–72 (2009).

    Article  Google Scholar 

  24. Lenardic, A. & Moresi, L.-N. Some thoughts on the stability of cratonic lithosphere: Effects of buoyancy and viscosity. J. Geophys. Res. 104, 12747–12758 (1999).

    Article  Google Scholar 

  25. Ritsema, J., Deuss, A., van Heijst, H. J. & Woodhouse, J. H. S40RTS: A degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements. Geophys. J. Int. 184, 1223–1236 (2011).

    Article  Google Scholar 

  26. Van der Lee, S. & Nolet, G. Upper mantle S velocity structure of North America. J. Geophys. Res. 102, 22815–22838 (1998).

    Article  Google Scholar 

  27. Forte, A. M. & Peltier, R. Viscous flow models of global geophysical observables: 1. Forward problems. J. Geophys. Res. 96, 20131–20159 (1991).

    Article  Google Scholar 

  28. Steinberger, B. & Calderwood, A. R. Models of large-scale viscous flow in the Earth’s mantle with constraints from mineral physics and surface observations. Geophys. J. Int. 167, 1461–1481 (2006).

    Article  Google Scholar 

  29. Kaban, M. K., Petrunin, A. G., Schmeling, H. & Shahraki, M. Effect of decoupling of lithospheric plates on the observed geoid. Surv. Geophys. 35, 1361–1373 (2014).

    Article  Google Scholar 

  30. Hayes, G. P., Wald, D. J. & Johnson, R. L. Slab1.0: A three-dimensional model of global subduction zone geometries. J. Geophys. Res. 117, B01302 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

This study was partly supported by the German Research Foundation (DFG, Grant PE2167/1-1) and the US Geological Survey.

Author information

Authors and Affiliations

Authors

Contributions

M.K.K. conceived the study and carried out the gravity data analysis and construction of the 3D density model. A.G.P. conducted the geodynamic modelling. M.K.K., W.D.M. and A.G.P. contributed to interpretation of the results and conclusions. M.K.K. and W.D.M. wrote the manuscript.

Corresponding author

Correspondence to Mikhail K. Kaban.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1361 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaban, M., Mooney, W. & Petrunin, A. Cratonic root beneath North America shifted by basal drag from the convecting mantle. Nature Geosci 8, 797–800 (2015). https://doi.org/10.1038/ngeo2525

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2525

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing