Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Secular change in Archaean crust formation recorded in Western Australia

This article has been updated

Abstract

The formation mechanisms for early Archaean continental crust are controversial. Continental crust may have accumulated via horizontal accretion in modern-style subduction zones or via vertical accretion above upper mantle upwelling zones. However, the characteristics of the continental crust changes at the transition between the Archaean and Proterozoic eons, suggesting that continental crust did not form in subduction zones until at least the late Archaean. Here I use seismic receiver function data to analyse the bulk properties of continental crust in Western Australia, which formed and stabilized over a billion years in the Archaean. I find that the bulk seismic properties of the crust cluster spatially, with similar clusters confined within the boundaries of tectonic terranes. I use local Archaean crustal growth models to show that both plume and subduction processes may have had a role in creating crust throughout the Archaean. A correlation between crustal age and the bulk seismic properties of the crust reveals a trend: from about 3.5 Gyr ago (Ga) to the end of the Archaean, the crust gradually thickened and simultaneously became more evolved in composition. I propose that this trend reflects the transition between crust dominantly formed above mantle plumes, to crust formed in subduction zones—a transition that may reflect secular cooling of Earth’s mantle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spatial distribution of the crustal observations in the Western Australian craton.
Figure 2: Clustering and temporal variations in the WA crust.
Figure 3: Comparison between the WA and global crust.

Similar content being viewed by others

Change history

  • 10 September 2015

    In the version of this Letter originally published, the colour bar for Fig. 1d should have been labelled 'Bulk crustal Vp (km s-1)'. This has been corrected in all versions.

References

  1. Abbott, D. H., Mooney, W. D. & VanTongeren, J. A. The character of the Moho and lower crust within Archean cratons and the tectonic implications. Tectonophysics 609, 690–705 (2013).

    Article  Google Scholar 

  2. Durrheim, R. J. & Mooney, W. D. Archean and Proteozoic crustal evolution: Evidence from crustal seismology. Geology 19, 606–609 (1991).

    Article  Google Scholar 

  3. Rudnick, R. L. Making continental crust. Nature 378, 571–578 (1995).

    Article  Google Scholar 

  4. Naeraa, T. et al. Hafnium isotope evidence for a transition in the dynamics of continental growth 3.2 Gyr ago. Nature 485, 627–630 (2012).

    Article  Google Scholar 

  5. Keller, C. B. & Schoene, B. Statistical geochemistry reveals disruption in secular lithospheric evolution about 2.5 Gyr ago. Nature 485, 490–493 (2012).

    Article  Google Scholar 

  6. Sizova, E., Gerya, T., Brown, M. & Perchuk, L. L. Subduction styles in the Precambrian: Insight from numerical experiments. Lithos 116, 209–229 (2010).

    Article  Google Scholar 

  7. Thompson, D. A. et al. Precambrian crustal evolution: Seismic constraints from the Canadian Shield. Earth Planet. Sci. Lett. 297, 655–666 (2010).

    Article  Google Scholar 

  8. Griffin, W. L., O’Reilly, S. Y., Afonso, J. C. & Begg, G. C. The composition and evolution of lithospheric mantle: A re-evaluation and its tectonic implications. J. Petrol. 50, 1185–1204 (2009).

    Article  Google Scholar 

  9. Petrescu, L., Bastow, I. D., Darbyshire, F., Levin, V. & Menke, W. in AGU 2014 Fall Meeting abstr. T23B-4655 (AGU, 2014)

  10. Darbyshire, F. A., Eaton, D. W., Frederiksen, A. W. & Ertolahti, L. New insights into the lithosphere beneath the Superior Province from Rayleigh wave dispersion and receiver function analysis. Geophys. J. Int. 169, 1043–1068 (2007).

    Article  Google Scholar 

  11. Christensen, N. I. Poisson’s ratio and crustal seismology. J. Geophys. Res. 101, 3139–3156 (1996).

    Article  Google Scholar 

  12. Zandt, G. & Ammon, C. J. Continental crust composition constrained by measurements of crustal Poisson’s ratio. Nature 374, 152–154 (1995).

    Article  Google Scholar 

  13. Tugume, F., Nyblade, A., Julià, J. & van der Meijde, M. Precambrian crustal structure in Africa and Arabia: Evidence lacking for secular variation. Tectonophysics 609, 250–266 (2013).

    Article  Google Scholar 

  14. Borah, K. et al. Preserved and modified mid-Archean crustal blocks in Dharwar craton: Seismological evidence. Precambr. Res. 246, 16–34 (2014).

    Article  Google Scholar 

  15. Youssof, M., Thybo, H., Artemieva, I. M. & Levander, A. Moho depth and crustal composition in Southern Africa. Tectonophysics 609, 267–287 (2013).

    Article  Google Scholar 

  16. Delph, J. R. & Porter, R. C. Crustal structure beneath southern Africa: Insight into how tectonic events affect the Mohorovičić discontinuity. Geophys. J. Int. 200, 254–264 (2015).

    Article  Google Scholar 

  17. de Wit, M. J. On Archean granites, greenstones, cratons and tectonics: Does the evidence demand a verdict? Precambr. Res. 91, 181–226 (1998).

    Article  Google Scholar 

  18. Van Kranendonk, M. J. et al. Making it Thick: A Volcanic Plateau Origin of Palaeoarchean Continental Lithosphere of the Pilbara and Kaapvaal Cratons Vol. 389 (Geological Society, London, Special Publications, 2014).

    Google Scholar 

  19. De Wit, M. & Tinker, J. Crustal structures across the central Kaapvaal craton from deep-seismic reflection data. South Afr. J. Geol. 107, 185–206 (2004).

    Article  Google Scholar 

  20. Artemieva, I. M. & Thybo, H. EUNAseis: A seismic model for Moho and crustal structure in Europe, Greenland, and the North Atlantic region. Tectonophysics 609, 97–153 (2013).

    Article  Google Scholar 

  21. Wilde, S. A., Valley, J. W., Peck, W. H. & Graham, C. M. Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409, 175–178 (2001).

    Article  Google Scholar 

  22. Huston, D. L., Blewett, R. S. & Champion, D. C. Australia through time: A summary of its tectonic and metallogenic evolution. Episodes 35, 23–43 (2012).

    Article  Google Scholar 

  23. Drummond, B. J. A review of crust/upper mantle structure in the Precambrian areas of Australia and implications for Precambrian crustal evolution. Precambr. Res. 40–41, 101–116 (1988).

    Article  Google Scholar 

  24. Clitheroe, G., Gudmundsson, O. & Kennett, B. L. N. The crustal thickness of Australia. J. Geophys. Res. 105, 13697–13713 (2000).

    Article  Google Scholar 

  25. Reading, A. M., Kennett, B. L. N. & Goleby, B. New constraints on the seismic structure of West Australia: Evidence for terrane stabilization prior to the assembly of an ancient continent? Geology 35, 379–382 (2007).

    Article  Google Scholar 

  26. Kennett, B. L. N., Salmon, M., Saygin, E. & Group, A. W. AusMoho: The variation of Moho depth in Australia. Geophys. J. Int. 187, 946–958 (2011).

    Article  Google Scholar 

  27. Aitken, A. R. A., Salmon, M. L. & Kennett, B. L. N. Australia’s Moho: A test of the usefulness of gravity modelling for the determination of Moho depth. Tectonophysics 609, 468–479 (2013).

    Article  Google Scholar 

  28. Zhu, L. & Kanamori, H. Moho depth variation in southern California from teleseismic receiver functions. J. Geophys. Res. 105, 2969–2980 (2000).

    Article  Google Scholar 

  29. Yuan, H., Dueker, K. & Stachnik, J. Crustal structure and thickness along the Yellowstone hot spot track: Evidence for lower crustal outflow from beneath the eastern Snake River Plain. Geochem. Geophys. Geosyst. 11, Q03009 (2010).

    Article  Google Scholar 

  30. Chevrot, S. & van der Hilst, R. D. The Poisson ratio of the Australian crust; geological and geophysical implications. Earth Planet. Sci. Lett. 183, 121–132 (2000).

    Article  Google Scholar 

  31. Cassidy, K. F. et al. A Revised Geological Framework for the Yilgarn Craton, Western Australia 8 (Geological Survey of Western Australia, 2006).

    Google Scholar 

  32. Zegers, T. E. & van Keken, P. E. Middle Archean continent formation by crustal delamination. Geology 29, 1083–1086 (2001).

    Article  Google Scholar 

  33. Bédard, J. H. A catalytic delamination-driven model for coupled genesis of Archaean crust and sub-continental lithospheric mantle. Geochim. Cosmochim. Acta 70, 1188–1214 (2006).

    Article  Google Scholar 

  34. Rudnick, R. L. & Fountain, D. M. Nature and composition of the continental crust: A lower crustal perspective. Rev. Geophys. 33, 267–309 (1995).

    Article  Google Scholar 

  35. Wyche, S. et al. Isotopic constraints on stratigraphy in the central and eastern Yilgarn Craton, Western Australia. Aust. J. Earth Sci. 59, 657–670 (2012).

    Article  Google Scholar 

  36. Griffin, W. L., Belousova, E. A., Shee, S. R., Pearson, N. J. & O’Reilly, S. Y. Archean crustal evolution in the northern Yilgarn Craton: U–Pb and Hf-isotope evidence from detrital zircons. Precambr. Res. 131, 231–282 (2004).

    Article  Google Scholar 

  37. Wilde, S. A., Middleton, M. F. & Evans, B. J. Terrane accretion in the southwestern Yilgarn Craton: Evidence from a deep seismic crustal profile. Precambr. Res. 78, 179–196 (1996).

    Article  Google Scholar 

  38. Czarnota, K. et al. Geodynamics of the eastern Yilgarn Craton. Precambr. Res. 183, 175–202 (2010).

    Article  Google Scholar 

  39. Korsch, R. J., Kositcin, N. & Champion, D. C. Australian island arcs through time: Geodynamic implications for the Archean and Proterozoic. Gondwana Res. 19, 716–734 (2011).

    Article  Google Scholar 

  40. Barley, M. E., Brown, S. J. A., Krapež, B. & Kositcin, N. Physical volcanology and geochemistry of a Late Archaean volcanic arc: Kurnalpi and Gindalbie Terranes, Eastern Goldfields Superterrane, Western Australia. Precambr. Res. 161, 53–76 (2008).

    Article  Google Scholar 

  41. Morris, P. A. & Kirkland, C. L. Melting of a subduction-modified mantle source: A case study from the Archean Marda Volcanic Complex, central Yilgarn Craton, Western Australia. Lithos 190–191, 403–419 (2014).

    Article  Google Scholar 

  42. Van Kranendonk, M. J., Ivanic, T. J., Wingate, M. T. D., Kirkland, C. L. & Wyche, S. Long-lived, autochthonous development of the Archean Murchison Domain, and implications for Yilgarn Craton tectonics. Precambr. Res. 229, 49–92 (2013).

    Article  Google Scholar 

  43. Hickman, A. & Van Kranendonk, M. J. Early Earth evolution: Evidence from the 3.5–1.8 Ga geological history of the Pilbara region of Western Australia. Episodes 35, 283–297 (2012).

    Article  Google Scholar 

  44. Dhuime, B., Hawkesworth, C. J., Cawood, P. A. & Storey, C. D. A change in the geodynamics of continental growth 3 Billion years ago. Science 335, 1334–1336 (2012).

    Article  Google Scholar 

  45. Shirey, S. B. & Richardson, S. H. Start of the Wilson cycle at 3 Ga shown by diamonds from subcontinental mantle. Science 333, 434–436 (2011).

    Article  Google Scholar 

  46. O’Neill, C. & Debaille, V. The evolution of Hadean–Eoarchaean geodynamics. Earth Planet. Sci. Lett. 406, 49–58 (2014).

    Article  Google Scholar 

  47. Smithies, R. H., Champion, D. C., Van Kranendonk, M. J., Howard, H. M. & Hickman, A. H. Modern-style subduction processes in the Mesoarchaean: Geochemical evidence from the 3.12 Ga Whundo intra-oceanic arc. Earth Planet. Sci. Lett. 231, 221–237 (2005).

    Article  Google Scholar 

  48. Champion, D. C. Neodymium Depleted Mantle Model Age Map of Australia: Explanatory Notes and User Guide (Geoscience Australia, 2013).

    Book  Google Scholar 

  49. Johnson, T. E., Brown, M., Kaus, B. J. P. & VanTongeren, J. A. Delamination and recycling of Archaean crust caused by gravitational instabilities. Nature Geosci. 7, 47–52 (2014).

    Article  Google Scholar 

  50. Christensen, N. I. & Mooney, W. D. Seismic velocity structure and composition of the continental crust; a global view. J. Geophys. Res. 100, 9761–9788 (1995).

    Article  Google Scholar 

  51. van der Hilst, R. D., Kennett, B. L. N., Christie, D. & Grant, J. Project SKIPPY explores the mantle and lithosphere beneath Australia. EOS Trans. Am. Geophys. Union 75, 180–191 (1994).

    Article  Google Scholar 

  52. Bostock, M. G. Mantle stratigraphy and evolution of the Slave province. J. Geophys. Res. 103, 21183–21200 (1998).

    Article  Google Scholar 

  53. Salmon, M., Kennett, B. L. N. & Saygin, E. Australian Seismological Reference Model (AuSREM): Crustal component. Geophys. J. Int. 192, 190–206 (2013).

    Article  Google Scholar 

  54. Park, J. & Levin, V. Receiver functions from multiple-taper spectral correlation estimates. Bull. Seismol. Soc. Am. 90, 1507–1520 (2000).

    Article  Google Scholar 

  55. Helffrich, G. Extended-time multitaper frequency domain cross-correlation receiver-function estimation. Bull. Seismol. Soc. Am. 96, 344–347 (2006).

    Article  Google Scholar 

  56. Lekic, V., French, S. W. & Fischer, K. M. Lithospheric thinning beneath rifted regions of southern California. Science 334, 783–787 (2011).

    Article  Google Scholar 

  57. Park, J., Yuan, H. & Levin, V. Subduction zone anisotropy beneath Corvallis, Oregon: A serpentinite skid mark of trench-parallel terrane migration? J. Geophys. Res. 109, B10306 (2004).

    Google Scholar 

  58. Nair, S. K., Gao, S. S., Liu, K. H. & Silver, P. G. Southern African crustal evolution and composition: Constraints from receiver function studies. J. Geophys. Res. 111, B02304 (2006).

    Article  Google Scholar 

  59. Bastow, I. D. et al. Precambrian plate tectonics: Seismic evidence from northern Hudson Bay. Geology G31396, 91–94 (2010).

    Google Scholar 

  60. Stachnik, J. C., Dueker, K., Schutt, D. L. & Yuan, H. Imaging Yellowstone plume–lithosphere interactions from inversion of ballistic and diffusive Rayleigh wave dispersion and crustal thickness data. Geochem. Geophys. Geosyst. 9, Q06004 (2008).

    Article  Google Scholar 

  61. Kennett, B. L. N. & Engdahl, E. R. Traveltimes for global earthquake location and phase identification. Geophys. J. Int. 105, 429–465 (1991).

    Article  Google Scholar 

  62. Efron, B. & Tibshitani, R. Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Stat. Sci. 1, 54–77 (1986).

    Article  Google Scholar 

  63. Korsch, R. J. et al. in Yilgarn Craton-Officer Basin-Musgrave Province Seismic and MT Workshop (ed. Neumann, N. L.) (Geoscience Australia, 2013).

    Google Scholar 

  64. Kennett, B. L. N., Saygin, E., Fomin, T. & Blewett, R. S. Deep Crustal Seismic Reflection Profiling: Australia 1978–2011 (ANU E Press and Commonwealth of Australia (Geoscience Australia), 2013).

    Google Scholar 

  65. Kennett, B. L. N. & Saygin, E. The nature of the Moho in Australia from reflection profiling: A review. GeoResJ 5, 74–91 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

I thank the Research School of Earth Sciences at the Australian National University and the IRIS DMC for providing the seismic data; B. Kennett and M. Salmon (ANU) for sharing and discussion on the AuSREM model; and A. Aitken (UWA) for sharing the gravity inversion results. Discussions with the following colleagues are acknowledged: A. Hickman, H. Smithies, S. Johnson and K. Gessner of the GSWA for the WA Archaean tectonics; K. Czarnota (Geoscience Australia) for WA isotopic ages and pointing to the Champion 2013 age data set; and R. Fischer (ETH) for Archaean geodynamics and pointing to the Sizova et al. 2010 paper. I thank W. L. Griffin and S. O’Reilly for suggestions and comments on an early version of the manuscript. This is contribution 649 from the ARC Centre of Excellence for Core to Crust Fluid Systems (http://www.ccfs.mq.edu.au). This paper is published with permission of the Executive Director of the Geological Survey of Western Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaiyu Yuan.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 11642 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, H. Secular change in Archaean crust formation recorded in Western Australia. Nature Geosci 8, 808–813 (2015). https://doi.org/10.1038/ngeo2521

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2521

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing