Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Global vulnerability of peatlands to fire and carbon loss

Abstract

Globally, the amount of carbon stored in peats exceeds that stored in vegetation and is similar in size to the current atmospheric carbon pool. Fire is a threat to many peat-rich biomes and has the potential to disturb these carbon stocks. Peat fires are dominated by smouldering combustion, which is ignited more readily than flaming combustion and can persist in wet conditions. In undisturbed peatlands, most of the peat carbon stock typically is protected from smouldering, and resistance to fire has led to a build-up of peat carbon storage in boreal and tropical regions over long timescales. But drying as a result of climate change and human activity lowers the water table in peatlands and increases the frequency and extent of peat fires. The combustion of deep peat affects older soil carbon that has not been part of the active carbon cycle for centuries to millennia, and thus will dictate the importance of peat fire emissions to the carbon cycle and feedbacks to the climate.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fire and drying losses of peat carbon to the atmosphere.
Figure 2: Fire and climate dynamics in peatlands.

Similar content being viewed by others

References

  1. Yu, Z. Northern peatland carbon stocks and dynamics: A review. Biogeosciences 9, 4071–4085 (2012).

    Article  Google Scholar 

  2. Page, S., Rieley, J. O. & Banks, C. J. Global and regional importance of the tropical peatland carbon pool. Glob. Change Biol. 17, 798–818 (2011).

    Article  Google Scholar 

  3. IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  4. Belyea, L. R. & Clymo, R. S. Feedback control of the rate of peat formation. Proc. R. Soc. Lond. B 268, 1315–1321 (2001).

    Article  Google Scholar 

  5. Freeman, C., Ostle, J. & Kang, H. An enzymic latch on a global carbon store. Nature 409, 149 (2001).

    Article  Google Scholar 

  6. Turetsky, M. R., Donahue, W. & Benscoter, B. W. Experimental drying intensifies burning and carbon losses in a northern peatland. Nature Commun. 2, 514 (2011).

    Article  Google Scholar 

  7. Harden, J. W. et al. The role of fire in the boreal carbon budget. Glob. Change Biol. 6, 174–184 (2000).

    Article  Google Scholar 

  8. Page, S. E. et al. A record of Late Pleistocene and Holocene carbon accumulation and climate change from an equatorial peat bog (Kalimantan, Indonesia): Implications for past, present and future carbon dynamics. J. Quat. Sci. 19, 625–635 (2004).

    Article  Google Scholar 

  9. Johnston, J. F., Hollingsworth, T. N., Chapin, F. S. III & Mack, M. C. Changes in fire regime break the legacy lock on successional trajectories in Alaskan boreal forest. Glob. Change Biol. 16, 1281–1295 (2010).

    Article  Google Scholar 

  10. Ohlemiller, T. J. Modeling of smoldering combustion propagation. Progr. Energy Combust. Sci. 11, 277–310 (1985).

    Article  Google Scholar 

  11. Frandsen, W. H. Ignition probability of organic soils. Can. J. Forest Res. 27, 1471–1477 (1997).

    Article  Google Scholar 

  12. Rein, G. in Fire Phenomena in the Earth System: An Interdisciplinary Approach to Fire Science (ed. Belcher, C.) 15–34 (Wiley, 2013).

    Book  Google Scholar 

  13. Belcher, C. M., Yearsley, J. M., Hadden, R. M., McElwain, J. C. & Rein, G. Baseline intrinsic flammability of Earth's ecosystems estimated from paleoatmospheric oxygen over the past 350 million years. Proc. Natl Acad. Sci. USA 107, 22448–22453 (2010).

    Article  Google Scholar 

  14. Rollins, M. S., Cohen, A. D. & Durig, J. R. Effects of fires on the chemical and petrographic composition of peat in the Snuggedy Swamp, North Carolina. Int. J. Coal. Geol. 22, 101–117 (1993).

    Article  Google Scholar 

  15. Dommain, R., Couwenberg, J. & Joosten, H. Hydrological self-regulation of domed peatlands in south-east Asia and consequences for conservation and restoration. Mires Peat 6, 1–17 (2010).

    Google Scholar 

  16. Waddington, J. M. et al. Hydrological feedbacks in northern peatlands. Ecohydrology http://dx.doi.org/10.1002/eco.1493 (2014).

  17. Gillett, N. P., Weaver, A. J., Zwiers, F. W. & Flannigan, M. D. Detecting the effect of climate change on Canadian forest fires. Geophys. Res. Lett. 31, L18211 (2004).

    Article  Google Scholar 

  18. Kasischke, E. S. & Turetsky, M. R. Recent changes in the fire regime across the North American boreal region: Spatial and temporal patterns of burning across Canada and Alaska. Geophys. Res. Lett. 33, L09703 (2006).

    Google Scholar 

  19. Benscoter, B. W. & Wieder, R. K. Variability in organic matter lost by combustion in a boreal bog during the 2001 Chisholm fire. Can. J. Forest Res. 33, 2509–2513 (2003).

    Article  Google Scholar 

  20. Turetsky, M. R. et al. Recent acceleration of biomass burning and carbon losses in Alaskan forests and peatlands. Nature Geosci. 4, 27–31 (2011).

    Article  Google Scholar 

  21. Kelly, T. J. et al. The high hydraulic conductivity of three wooded tropical peat swamps in northeast Peru: Measurements and implications for hydrological function. Hydrol. Process. http://dx.doi.org/10.1002/hyp.9884 (2013).

  22. Goldammer, J. G. in Global Biomass Burning: Atmospheric, Climatic, and Biospheric Implications (ed. Levine, J. S.) 83–91 (MIT, 1992).

    Google Scholar 

  23. Langner, A. & Siegert, F. Spatiotemporal fire occurrence in Borneo over a period of 10 years. Glob. Change Biol. 15, 48–62 (2009).

    Article  Google Scholar 

  24. Page, S. E. et al. The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature 420, 61–65 (2002).

    Article  Google Scholar 

  25. Ballhorn, U., Siegert, F., Mason, M. & Limin, S. Derivation of burn scar depths and estimation of carbon emissions with LIDAR in Indonesian peatlands. Proc. Natl Acad. Sci. USA 106, 21213–21218 (2009).

    Article  Google Scholar 

  26. Hoscilo, A., Page, S. E., Tansey, K. J. & Rieley, J. O. Effect of repeated fires on land-cover change on peatland in southern Central Kalimantan, Indonesia, from 1973 to 2005. Int. J. Wildland Fire 20, 578–588 (2011).

    Article  Google Scholar 

  27. Benscoter, B. W. & Vitt, D. H. Spatial patterns and temporal trajectories in bog ground layer composition along a post-fire chronosequence. Ecosystems 11, 1054–1064 (2008).

    Article  Google Scholar 

  28. Kettridge, N., Thompson, D. K. & Waddington, J. M. Impact of wildfire on the thermal behavior of northern peatlands: Observations and model simulations. J. Geophys. Res. Biogeosci. 117, G02014 (2012).

    Google Scholar 

  29. Shetler, G., Turetsky, M. R., Kane, E. & Kasischke, E. S. Sphagnum mosses limit total carbon consumption during fire in Alaskan black spruce forests. Can. J. Forest Res. 38, 2328–2336 (2008).

    Article  Google Scholar 

  30. Benscoter, B. et al. Interactive effects of vegetation, soil moisture, and bulk density on depth of burning of thick organic soils. Int. J. Wildland Fire 20, 418–429 (2011).

    Article  Google Scholar 

  31. Hartford, R. A. & Frandsen, W. When it's hot, it's hot. Or maybe it's not! (Surface flaming may not portend extensive soil heating.) Int. J. Wildland Fire 2, 139–144 (1992).

    Article  Google Scholar 

  32. Hart, S. C., DeLuca, T. H., Newman, G. S., MacKenzie, M. D. & Boyle, S. I. Post-fire vegetative dynamics as drivers of microbial community structure and function in forest soils. Forest Ecol. Managem. 220, 166–184 (2005).

    Article  Google Scholar 

  33. Treseder, K. K., Mack, M. C. & Cross, A. Relationships among fires, fungi, and soil dynamics in Alaskan boreal forests. Ecol. Applic. 14, 1826–1838 (2004).

    Article  Google Scholar 

  34. Frolking, S. & Roulet, N. T. Holocene radiative forcing impact of northern peatland carbon accumulation and methane emissions. Glob. Change Biol. 13, 1079–1088 (2007).

    Article  Google Scholar 

  35. Frolking, S. et al. Peatlands in the Earth's 21st century climate system. Environ. Rev. 19, 371–296 (2011).

    Article  Google Scholar 

  36. Trumbore, S. Radiocarbon and soil carbon dynamics. Annu. Rev. Earth Planet. Sci. 37, 47–66 (2009).

    Article  Google Scholar 

  37. van der Werf, G. R. et al. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos. Chem. Phys. 10, 11707–11735 (2010).

    Article  Google Scholar 

  38. Heil, A., Langmann, B. & Aldrian, E. Indonesian peat and vegetation fire emissions: Study on factors influencing large-scale smoke haze pollution using a regional atmospheric chemistry model. Mitig. Adapt. Strateg. Glob. Change 12, 113–133 (2006).

    Article  Google Scholar 

  39. Davies, S. J. & Unam, L. Smoke-haze from the 1997 Indonesian forest fires: effects on pollution levels, local climate, atmospheric CO2 concentrations, and tree photosynthesis. Forest Ecol. Managem. 124, 137–144 (1999).

    Article  Google Scholar 

  40. Jaafar, Z. & Loh, T-L. Linking land, air, and sea: potential impacts of biomass burning and the resultant haze on marine ecosystems of Southeast Asia. Glob. Change Biol. http://dx.doi.org/10.1111/gcb.12539 (2014).

  41. Chakrabarty, R. K. et al. Brown carbon in tar balls from smoldering biomass combustion. Atmos. Chem. Phys. 10, 6297–6300 (2010).

    Article  Google Scholar 

  42. Frey, K. E. & Smith, L. C. How well do we know northern land cover? Comparison of four global vegetation and wetland products with a new ground-truth database for West Siberia. Glob. Biogeochem. Cycles 21, GB1016 (2007).

    Article  Google Scholar 

  43. Tansey, K., Beston, J., Hoscilo, A., Page, S. E. & Hernandez, C. U. P. Relationship between MODIS fire hot spot count and burned area in a degraded tropical peat swamp forest in Central Kalimantan, Indonesia. J. Geophys. Res. 113, http://dx.doi.org/10.1029/2008JD010717 (2008).

  44. See, S. W., Balasubramanian, R., Rianawati, E., Karthikeyan, S. & Streets, D. G. Characterization and source apportionment of particulate matter ≤2.5 micrometer in Sumatra, Indonesia, during a recent peat fire episode. Environ. Sci. Technol. 41, 3488–3494 (2007).

    Article  Google Scholar 

  45. Rappold, A. G. et al. Peat bog wildfire smoke exposure in rural North Carolina is associated with cardiopulmonary emergency department visits assessed through syndromic surveillance. Environ. Health Persp. 119, 1415–1420 (2011).

    Article  Google Scholar 

  46. Johnston, F. H. et al. Estimated global mortality attributable to smoke from landscape fires. Environ. Health Persp. 120, http://dx.doi.org/10.1289/ehp.1104422 (2012).

    Article  Google Scholar 

  47. Sastry, N. Forest fires, air pollution and mortality in Southeast Asia. Demography 39, 1–23 (2002).

    Article  Google Scholar 

  48. Tallis, J. H. Fire and flood at Holme Moss: Erosion processes in an upland blanket mire. J. Ecol. 75, 1099–1130 (1987).

    Article  Google Scholar 

  49. Yu, Z. C., Loisel, J., Brosseau, D. P., Beilman, D. W. & Hunt, S. J. Global peatland dynamics since the Last Glacial Maximum. Geophys. Res. Lett. 37, L13402 (2010).

    Google Scholar 

  50. Giglio, L., Randerson, J. T. & van der Werf, G. R. Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4). J. Geophys. Res. Biogeosci. 118, 317–328 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

We thank A. D. McGuire and M. Flannigan for comments on previous versions of this manuscript. We also thank our numerous colleagues working in boreal, temperate, and tropical regions for their efforts and progress on the subject of peat fires. We acknowledge support from the NSERC and NASA to M.R.T., the EU and NERC to S.P., the European Research Council to G.R.v.d.W., EPSRC to G.R. and the NSF to A.W.

Author information

Authors and Affiliations

Authors

Contributions

M.R.T. led this synthesis and all authors contributed to writing and ideas presented.

Corresponding author

Correspondence to Merritt R. Turetsky.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 240 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turetsky, M., Benscoter, B., Page, S. et al. Global vulnerability of peatlands to fire and carbon loss. Nature Geosci 8, 11–14 (2015). https://doi.org/10.1038/ngeo2325

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2325

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing