Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Lower-mantle water reservoir implied by the extreme stability of a hydrous aluminosilicate

Abstract

The source rocks for basaltic lavas that form ocean islands are often inferred to have risen as part of a thermal plume from the lower mantle. These rocks are water-rich compared with average upper-mantle rocks. However, experiments indicate that the solubility of water in the dominant lower-mantle phases is very low, prompting suggestions that plumes may be sourced from as-yet unidentified reservoirs of water-rich primordial material in the deep mantle. Here we perform high-pressure experiments to show that Al2SiO4(OH)2—the aluminium-rich endmember of dense, hydrous magnesium silicate phase D—is stable at temperatures extending to over 2,000 °C at 26 GPa. We find that under these conditions, Al-rich phase D is stable within mafic rocks, which implies that subducted oceanic crust could be a significant long-term water reservoir in the convecting lower mantle. We suggest that melts formed in the lower mantle by the dehydration of hydrous minerals in dense ultramafic rocks will migrate into mafic lithologies and crystallize to form Al-rich phase D. When mantle rocks upwell, water will be locally redistributed into nominally anhydrous minerals. This upwelling material provides a potential source for ocean-island basalts without requiring reservoirs of water-rich primordial material in the deep mantle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schreinemakers analysis of phase relations in the system Al2O3–SiO2–H2O.
Figure 2: Scanning electron micrographs of recovered phase D-bearing samples.
Figure 3: Al/Fe ratio in phase D as a function of bridgmanite composition.
Figure 4: Potential mechanisms of deep hydrogen transport between hydrous phases and melts in a subduction zone.

Similar content being viewed by others

References

  1. Bolfan-Casanova, N. Water in the Earth’s mantle. Mineral. Mag. 69, 229–257 (2005).

    Article  Google Scholar 

  2. Ardia, P., Hirschmann, M. M., Withers, A. C. & Tenner, T. J. H2O storage capacity of olivine at 5–8 GPa and consequences for dehydration partial melting of the upper mantle. Earth Planet. Sci. Lett. 345, 104–116 (2012).

    Article  Google Scholar 

  3. Pearson, D. G. et al. Hydrous mantle transition zone indicated by ring-woodite included within diamond. Nature 507, 221–224 (2014).

    Article  Google Scholar 

  4. Bolfan-Casanova, N., Keppler, H. & Rubie, D. C. Water partitioning between nominally anhydrous minerals in the MgO–SiO2–H2O system up to 24 GPa: Implications for the distribution of water in the Earth’s mantle. Earth Planet. Sci. Lett. 182, 209–221 (2000).

    Article  Google Scholar 

  5. Bolfan-Casanova, N., Keppler, H. & Rubie, D. C. Water partitioning at 660 km depth and evidence for very low water solubility in magnesium silicate perovskite. Geophys. Res. Lett. 30, 1905 (2003).

    Article  Google Scholar 

  6. Dixon, J. E., Leist, L., Langmuir, C. & Schilling, J-G. Recycled dehydrated lithosphere observed in plume-influenced mid-ocean-ridge basalt. Nature 420, 385–389 (2002).

    Article  Google Scholar 

  7. Saal, A. E., Hauri, E. H., Langmuir, C. H. & Perfit, M. R. Vapour undersaturation in primitive mid-ocean-ridge basalt and the volatile content of Earth’s upper mantle. Nature 419, 451–455 (2002).

    Article  Google Scholar 

  8. Ohtani, E. Water in the mantle. Elements 1, 25–30 (2005).

    Article  Google Scholar 

  9. Nishi, M. et al. Stability of hydrous silicate at high pressures and water transport to the deep lower mantle. Nature Geosci. 7, 224–227 (2014).

    Article  Google Scholar 

  10. Ringwood, A. E. & Major, A. High-pressure reconnaissance investigations in the system Mg2SiO4–MgO–H2O. Earth Planet. Sci. Lett. 2, 130–133 (1967).

    Article  Google Scholar 

  11. Liu, L-g. Effects of H2O on the phase behaviour of the forsterite–enstatite system at high pressures and temperatures and implications for the Earth. Phys. Earth Planet. Inter. 49, 142–167 (1987).

    Article  Google Scholar 

  12. Ghosh, S. & Schmidt, M. W. Melting of phase D in the lower mantle and implications for recycling and storage of H2O in the deep mantle. Geochim. Cosmochim. Acta 145, 72–88 (2014).

    Article  Google Scholar 

  13. Ohtani, E., Litasov, K., Suzuki, A. & Kondo, T. Stability field of new hydrous phase, δ-AlOOH, with implications for water transport into the deep mantle. Geophys. Res. Lett. 28, 3991–3993 (2001).

    Article  Google Scholar 

  14. Ohira, I. et al. Stability of a hydrous δ-phase, AlOOH–MgSiO2(OH)2, and a mechanism for water transport into the base of lower mantle. Earth Planet. Sci. Lett. 401, 12–17 (2014).

    Article  Google Scholar 

  15. Ono, S. High temperature stability limit of phase egg, AlSiO3(OH). Contrib. Mineral. Petrol. 137, 83–89 (1999).

    Article  Google Scholar 

  16. Wirth, R., Vollmer, C., Brenker, F., Matsyuk, S. & Kaminsky, F. Inclusions of nanocrystalline hydrous aluminium silicate “Phase Egg” in superdeep diamonds from Juina (Mato Grosso State, Brazil). Earth Planet. Sci. Lett. 259, 384–399 (2007).

    Article  Google Scholar 

  17. Poli, S. & Schmidt, M. W. Petrology of subducted slabs. Annu. Rev. Earth Planet. Sci. 30, 207–235 (2002).

    Article  Google Scholar 

  18. Helffrich, G. R. & Wood, B. J. The Earth’s mantle. Nature 412, 501–507 (2001).

    Article  Google Scholar 

  19. Hirschmann, M. M. & Stolper, E. M. A possible role for garnet pyroxenite in the origin of the “garnet signature” in MORB. Contrib. Mineral. Petrol. 124, 185–208 (1996).

    Article  Google Scholar 

  20. Boffa Ballaran, T., Frost, D. J., Miyajima, N. & Heidelbach, F. The structure of a super-aluminous version of the dense hydrous-magnesium silicate phase D. Am. Mineral. 95, 1113–1116 (2010).

    Article  Google Scholar 

  21. Sano, A., Ohtani, E., Kubo, T. & Funakoshi, K-i. In situ X-ray observation of decomposition of hydrous aluminum silicate AlSiO3OH and aluminum oxide hydroxide δ-AlOOH at high pressure and temperature. J. Phys. Chem. Solids 65, 1547–1554 (2004).

    Article  Google Scholar 

  22. Yang, H., Prewitt, C. T. & Frost, D. J. Crystal structure of the dense hydrous magnesium silicate, phase D. Am. Mineral. 82, 651–654 (1997).

    Article  Google Scholar 

  23. Smyth, J. R. β-Mg2SiO4: A potential host for water in the mantle? Am. Mineral. 72, 1051–1055 (1987).

    Google Scholar 

  24. Suzuki, A. et al. Neutron diffraction study of hydrous phase G: Hydrogen in the lower mantle hydrous silicate, phase G. Geophys. Res. Lett. 28, 3987–3990 (2001).

    Article  Google Scholar 

  25. Ishii, T., Kojitani, H. & Akaogi, M. Post-spinel transitions in pyrolite and Mg2SiO4 and akimotoite-perovskite transition in MgSiO3: Precise comparison by high-pressure high-temperature experiments with multi-sample cell technique. Earth Planet. Sci. Lett. 309, 185–197 (2011).

    Article  Google Scholar 

  26. Litasov, K. D., Ohtani, E., Suzuki, A. & Funakoshi, K. The compressibility of Fe- and Al-bearing phase D to 30 GPa. Phys. Chem. Mineral. 34, 159–167 (2007).

    Article  Google Scholar 

  27. Hirose, K. & Fei, Y. Subsolidus and melting phase relations of basaltic composition in the uppermost lower mantle. Geochim. Cosmochim. Acta 66, 2099–2108 (2002).

    Article  Google Scholar 

  28. Hacker, B. R. H2O subduction beyond arcs. Geochem. Geophys. Geosyst. 9, Q03001 (2008).

    Article  Google Scholar 

  29. Holzapfel, C., Rubie, D. C., Frost, D. J. & Langenhorst, F. Fe–Mg interdiffusion in (Mg, Fe)SiO3 perovskite and lower mantle reequilibration. Science 309, 1707–1710 (2005).

    Article  Google Scholar 

  30. Hauri, E. H., Gaetani, G. A. & Green, T. H. Partitioning of water during melting of the Earth’s upper mantle at H2O-undersaturated conditions. Earth Planet. Sci. Lett. 248, 715–734 (2006).

    Article  Google Scholar 

  31. Workman, R. K., Hauri, E., Hart, S. R., Wang, J. & Blusztajn, J. Volatile and trace elements in basaltic glasses from Samoa: Implications for water distribution in the mantle. Earth Planet. Sci. Lett. 241, 932–951 (2006).

    Article  Google Scholar 

  32. Stracke, A., Hofmann, A. W. & Hart, S. R. FOZO, HIMU, and the rest of the mantle zoo. Geochem. Geophys. Geosyst. 6, Q05007 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank G. Gollner, H. Fischer, S. Übelhack, G. Manthilake, H. Schulze, U. Dittman and D. Krauße. This work was funded through the support of European Research Council (ERC) Advanced Grant ‘DEEP’ (#227893). R.M. is supported by an Alexander von Humboldt Postdoctoral Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

T.B.B. and D.J.F. designed the study; M.G.P. performed the experiments and processed the analytical data with assistance from F.H. (EBSD) and N.M. (TEM); T.B.B. performed the structural refinement; R.M., T.B.B. and D.J.F. interpreted the analytical data; R.M., M.G.P. and D.J.F. wrote the paper. All the authors discussed the results and implications and commented on the manuscript at all stages.

Corresponding author

Correspondence to Robert Myhill.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2648 kb)

Supplementary Information

Supplementary Information (XLS 26 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pamato, M., Myhill, R., Boffa Ballaran, T. et al. Lower-mantle water reservoir implied by the extreme stability of a hydrous aluminosilicate. Nature Geosci 8, 75–79 (2015). https://doi.org/10.1038/ngeo2306

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2306

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing