Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Sand dune patterns on Titan controlled by long-term climate cycles

Abstract

Linear sand dunes cover the equatorial latitudes of Saturn’s moon Titan and are shaped by global wind patterns1,2,3. These dunes are thought to reflect present-day diurnal, tidal and seasonal winds1,3,4,5,6, but climate models have failed to reproduce observed dune morphologies with these wind patterns4,6. Dunes diagnostic of a specific wind7,8 or formative timescale9,10,11 have remained elusive3,5,12. Here we analyse radar imagery from NASA’s Cassini spacecraft and identify barchan, star and reoriented dunes in sediment-limited regions of Titan’s equatorial dune fields that diverge by 23° on average from the orientation of linear dunes. These morphologies imply shifts in wind direction and sediment availability. Using a numerical model, we estimate that the observed reorientation of dune crests to a change in wind direction would have taken around 3,000 Saturn years (1 Saturn year ~ 29.4 Earth years) or longer—a timescale that exceeds diurnal, seasonal or tidal cycles. We propose that shifts in winds and sediment availability are the product of long-term climate cycles associated with variations in Saturn’s orbit. Orbitally controlled landscape evolution—also proposed to explain the distribution of Titan’s polar lakes13—implies a dune-forming climate on equatorial Titan that is analogous to Earth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison of sand dune patterns in the solar system.
Figure 2: Despeckled Cassini radar images of barchan, star and reoriented dunes.
Figure 3: Modelled dune reorientation timescales of Titan’s dunes.

Similar content being viewed by others

References

  1. Lorenz, R. D. et al. The sand seas of Titan: Cassini RADAR observations of longitudinal dunes. Science 312, 724–727 (2006).

    Article  Google Scholar 

  2. Lorenz, R. D. & Radebaugh, J. Global pattern of Titan’s dunes: Radar survey from the Cassini prime mission. Geophys. Res. Lett. 36, L03202 (2009).

    Article  Google Scholar 

  3. Radebaugh, J. et al. Dunes on Titan observed by Cassini Radar. Icarus 194, 690–703 (2008).

    Article  Google Scholar 

  4. Barnes, J. et al. Spectroscopy, morphometry and photoclinometry of Titan’s dune fields from Cassini/VIMS. Icarus 195, 400–414 (2008).

    Article  Google Scholar 

  5. Rubin, D. M. & Hesp, P. a. Multiple origins of linear dunes on Earth and Titan. Nature Geosci. 2, 653–658 (2009).

    Article  Google Scholar 

  6. Tokano, T. Relevance of fast westerlies at equinox for the eastward elongation of Titan’s dunes. Aeolian Res. 2, 113–127 (2010).

    Article  Google Scholar 

  7. Bagnold, R. A. The Physics of Blown Sand and Desert Dunes Vol. 265 (Chapman and Hall, 1941).

    Google Scholar 

  8. Rubin, D. M. & Hunter, R. E. Bedform alignment in directionally varying flows. Science 237, 276–278 (1987).

    Article  Google Scholar 

  9. Rubin, D. & Ikeda, H. Flume experiments on the alignment of transverse, oblique, and longitudinal dunes in directionally varying flows. Sedimentology 37, 673–684 (1990).

    Article  Google Scholar 

  10. Ewing, R. C., Kocurek, G. & Lake, L. W. Pattern analysis of dune-field parameters. Earth Surf. Process. Landf. 31, 1176–1191 (2006).

    Article  Google Scholar 

  11. Ewing, R. C., Peyret, A. P. B., Kocurek, G. & Bourke, M. Dune field pattern formation and recent transporting winds in the Olympia Undae Dune Field, north polar region of Mars. J. Geophys. Res. 115, E08005 (2010).

    Article  Google Scholar 

  12. Savage, C. J., Radebaugh, J., Christiansen, E. H. & Lorenz, R. D. Implications of dune pattern analysis for Titan’s surface history. Icarus 230, 180–190 (2014).

    Article  Google Scholar 

  13. Aharonson, O. et al. An asymmetric distribution of lakes on Titan as a possible consequence of orbital forcing. Nature Geosci. 2, 851–854 (2009).

    Article  Google Scholar 

  14. Kocurek, G. & Ewing, R. C. in Sedimentary Geology of Mars (eds Grotzinger, J. P. & Milliken, R. E.) 151–168 (SEPM Special Publication 102, 2012).

    Google Scholar 

  15. Lucas, A. et al. Growth mechanisms and dune orientation on Titan. Geophys. Res. Lett. 41, 6093–6100 (2014).

    Article  Google Scholar 

  16. Parteli, E. J. R., Durán, O., Tsoar, H., Schwämmle, V. & Herrmann, H. J. Dune formation under bimodal winds. Proc. Natl Acad. Sci. USA 106, 22085–22089 (2009).

    Article  Google Scholar 

  17. Allen, J. R. L. Reaction, relaxation and lag in natural sedimentary systems: General principles, examples and lessons. Earth-Sci. Rev. 10, 263–342 (1974).

    Article  Google Scholar 

  18. Lucas, A. et al. Insights into Titan’s geology and hydrology based on enhanced image processing of Cassini RADAR data. J. Geophys. Res. 119, 2149–2166 (2014).

    Article  Google Scholar 

  19. Radebaugh, J. et al. Linear dunes on Titan and Earth: Initial remote sensing comparisons. Geomorphology 121, 122–132 (2010).

    Article  Google Scholar 

  20. Kocurek, G. & Ewing, R. C. Aeolian dune field self-organization—implications for the formation of simple versus complex dune-field patterns. Geomorphology 72, 94–105 (2005).

    Article  Google Scholar 

  21. Tsoar, H. Linear dunes—forms and formation. Prog. Phys. Geogr. 13, 507–528 (1989).

    Article  Google Scholar 

  22. Zhang, D., Narteau, C., Rozier, O. & Courrech du Pont, S. Morphology and dynamics of star dunes from numerical modelling. Nature Geosci. 5, 463–467 (2012).

    Article  Google Scholar 

  23. Kocurek, G. & Lancaster, N. Aeolian system sediment state: Theory and Mojave Desert Kelso dune field example. Sedimentology 46, 505–515 (1999).

    Article  Google Scholar 

  24. Griffith, C. A. et al. Possible tropical lakes on Titan from observations of dark terrain. Nature 486, 237–239 (2012).

    Article  Google Scholar 

  25. DeMenocal, P. et al. Abrupt onset and termination of the African Humid Period: Rapid climate responses to gradual insolation forcing. Quat. Sci. Rev. 19, 347–361 (2000).

    Article  Google Scholar 

  26. Werner, B. T. & Kocurek, G. Bed-form dynamics: Does the tail wag the dog? Geology 25, 771–774 (1997).

    Article  Google Scholar 

  27. Lancaster, N. et al. Late Pleistocene and Holocene dune activity and wind regimes in the western Sahara Desert of Mauritania. Geology 30, 991–994 (2002).

    Article  Google Scholar 

  28. Burr, D. M. et al. Fluvial features on Titan: Insights from morphology and modeling. Geol. Soc. Am. Bull. 125, 299–321 (2013).

    Article  Google Scholar 

  29. Hayes, A. et al. Hydrocarbon lakes on Titan: Distribution and interaction with a porous regolith. Geophys. Res. Lett. 35, L09204 (2008).

    Article  Google Scholar 

  30. Ewing, R. C. & Kocurek, G. Aeolian dune-field pattern boundary conditions. Geomorphology 114, 175–187 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

Comments from C. Newman and T. Farr greatly improved our manuscript. This research was supported by NASA through the Cassini Data Analysis Program by grant NNX14AD52G to R.C.E. and A.G.H. A.L. thanks the French Space Agency (CNES) for its support. We thank C. McCormick, D. Parker and S. Troy at the University of Alabama and C. Ballard from University of California at Berkeley for assistance with mapping.

Author information

Authors and Affiliations

Authors

Contributions

R.C.E. and A.G.H. contributed to the design, research, analysis and writing of the study. A.L. contributed the de-noised Titan data and manuscript editing.

Corresponding author

Correspondence to Ryan C. Ewing.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 4302 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ewing, R., Hayes, A. & Lucas, A. Sand dune patterns on Titan controlled by long-term climate cycles. Nature Geosci 8, 15–19 (2015). https://doi.org/10.1038/ngeo2323

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2323

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing