Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mantle flow and multistage melting beneath the Galápagos hotspot revealed by seismic imaging

Abstract

Some of Earth’s largest magmatic provinces result from the interaction between mid-ocean ridges and near-ridge hotspots, which are hypothesized to overlie plumes of upwelling mantle. Geodynamic models predict that upwelling plumes are sheared by the motion of the overlying tectonic plates and can connect to a nearby mid-ocean ridge by shallow flow beneath thin, young lithosphere. Here we present seismic tomographic images of the upper 300 km of the mantle beneath the Galápagos Archipelago in the eastern Pacific Ocean. We observe a low-velocity anomaly, indicative of an upwelling plume, that is not deflected in the direction of plate motion. Instead, the anomaly tilts towards the mid-ocean ridge at depths well below the lithosphere. These characteristics of the plume–ridge connection beneath the Galápagos Archipelago are consistent with the presence of multiple stages of partial melting, melt extraction, and melt remixing within the plume and surrounding mantle. These processes affect the viscosity of the asthenosphere, alter the upwelling plume and influence the compositions of surface lavas. Our results imply that the coupling between the oceanic plate and plume upwelling beneath the Galápagos is weak. Multistage melting may similarly affect the geophysical and geochemical characteristics of other hotspots.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Map of the Galápagos Islands and seismic network.
Figure 2: Delay times of teleseismic S waves.
Figure 3: Results of tomographic inversion for S-wave velocity structure.
Figure 4: Schematic illustration of mantle flow and melting and their relation to geochemical observations.
Figure 5: Predicted and observed trace element compositions of magmas produced by melting of the Galápagos plume.

Similar content being viewed by others

References

  1. Morgan, W. J. Convection plumes in the lower mantle. Nature 230, 42–43 (1971).

    Article  Google Scholar 

  2. Wolfe, C. J., Bjarnason, I. T., VanDecar, J. C. & Solomon, S. C. Seismic structure of the Iceland mantle plume. Nature 385, 245–247 (1997).

    Article  Google Scholar 

  3. Montelli, R. et al. Finite-frequency tomography reveals a variety of plumes in the mantle. Science 303, 338–343 (2004).

    Article  Google Scholar 

  4. Wolfe, C. J. et al. Mantle shear-wave velocity structure beneath the Hawaiian hot spot. Science 326, 1388–1390 (2009).

    Article  Google Scholar 

  5. Schmandt, B., Dueker, K., Humphreys, E. & Hansen, S. Hot mantle upwelling across the 660 beneath Yellowstone. Earth Planet. Sci. Lett. 331–332, 224–236 (2012).

    Article  Google Scholar 

  6. Ribe, N. M. & Christensen, U. R. Three-dimensional modeling of plume–lithosphere interaction. J. Geophys. Res. 99, 669–682 (1994).

    Article  Google Scholar 

  7. Ribe, N. M. The dynamics of plume–ridge interaction 2. Off-ridge plumes. J. Geophys. Res. 101, 16195–16204 (1996).

    Article  Google Scholar 

  8. Feighner, M. A. & Richards, M. A. The fluid dynamics of plume–ridge and plume-plate interactions: An experimental investigation. Earth Planet. Sci. Lett. 129, 171–182 (1995).

    Article  Google Scholar 

  9. Ito, G., Lin, J. & Graham, D. Observational and theoretical studies of the dynamics of mantle plume–mid-ocean ridge interaction. Rev. Geophys. 41, 1017 (2003).

    Article  Google Scholar 

  10. Wilson, D. S. & Hey, R. N. History of rift propagation and magnetization intensity for the Cocos-Nazca spreading center. J. Geophys. Res. 100, 10041–10056 (1995).

    Article  Google Scholar 

  11. Mittelstaedt, E. et al. Multiple expressions of plume–ridge interaction in the Galápagos: Volcanic lineaments and ridge jumps. Geochem. Geophys. Geosyst. 13, Q05018 (2012).

    Article  Google Scholar 

  12. Gripp, A. E. & Gordon, R. G. Young tracks of hotspots and current plate velocities. Geophys. J. Int. 150, 321–361 (2002).

    Article  Google Scholar 

  13. Morgan, W. J. Rodriguez, Darwin, Amsterdam,..., a second type of hotspot island. J. Geophys. Res. 83, 5355–5360 (1978).

    Article  Google Scholar 

  14. Harpp, K. & Geist, D. Wolf-Darwin lineament and plume–ridge interaction in northern Galápagos. Geochem. Geophys. Geosyst. 3, 8504 (2002).

    Article  Google Scholar 

  15. Schilling, J. G., Kingsley, R. H. & Devine, J. D. Galapagos hot spot-spreading center system 1. Spatial petrological and geochemical variations (83° W–111 °W). J. Geophys. Res. 87, 5593–5610 (1982).

    Article  Google Scholar 

  16. Ito, G. T. & Lin, J. Mantle temperature anomalies along the past and paleoaxes of the Galápagos spreading center as inferred from gravity analyses. J. Geophys. Res. 100, 3733–3745 (1995).

    Article  Google Scholar 

  17. Canales, J. P., Ito, G., Detrick, R. S. & Sinton, J. Crustal thickness along the western Galapagos Spreading Center and the compensation of the Galapagos hotspot swell. Earth Planet. Sci. Lett. 203, 311–327 (2002).

    Article  Google Scholar 

  18. Detrick, R. S. et al. Correlated geophysical, geochemical, and volcanological manifestations of plume–ridge interaction along the Galápagos Spreading Center. Geochem. Geophys. Geosyst. 3, 8501 (2002).

    Article  Google Scholar 

  19. Schilling, J., Fontignie, D., Blichert-Toft, J., Kingsley, R. & Tomza, U. Pb–Hf–Nd–Sr isotope variations along the Galápagos Spreading Center (101–83 W): Constraints on the dispersal of the Galápagos mantle plume. Geochem. Geophys. Geosyst. 4, 8512 (2003).

    Article  Google Scholar 

  20. Ingle, S. et al. Mechanisms of geochemical and geophysical variations along the western Galápagos Spreading Center. Geochem. Geophys. Geosyst. 11, Q04003 (2010).

    Article  Google Scholar 

  21. Shorttle, O., Maclennan, J. & Jones, S. M. Control of the symmetry of plume–ridge interaction by spreading ridge geometry. Geochem. Geophys. Geosyst. 11, Q0AC05 (2010).

    Article  Google Scholar 

  22. Villagómez, D., Toomey, D. R., Hooft, E. E. E. & Solomon, S. C. Upper mantle structure beneath the Galápagos Archipelago from surface wave tomography. J. Geophys. Res. 112, B07303 (2007).

    Article  Google Scholar 

  23. Hooft, E. E. E., Toomey, D. R. & Solomon, S. C. Anomalously thin transition zone beneath the Galápagos hotspot. Earth Planet. Sci. Lett. 216, 55–64 (2003).

    Article  Google Scholar 

  24. Villagómez, D. R., Toomey, D. R., Hooft, E. E. E. & Solomon, S. C. Crustal structure beneath the Galápagos Archipelago from ambient noise tomography and its implications for plume–lithosphere interactions. J. Geophys. Res. 116, B04310 (2011).

    Article  Google Scholar 

  25. Kurz, M. D. & Geist, D. Dynamics of the Galapagos hotspot from helium isotope geochemistry. Geochim. Cosmochim. Acta 63, 4139–4156 (1999).

    Article  Google Scholar 

  26. Hirth, G. & Kohlstedt, D. L. Water in the oceanic upper mantle: implications for rheology, melt extraction and the evolution of the lithosphere. Earth Planet. Sci. Lett. 144, 93–108 (1996).

    Article  Google Scholar 

  27. Moore, W. B., Schubert, G. & Tackley, P. Three-dimensional simulations of plume–lithosphere interaction at the Hawaiian Swell. Science 279, 1008–1011 (1998).

    Article  Google Scholar 

  28. Dasgupta, R. & Hirschmann, M. M. Melting in the Earth’s deep upper mantle caused by carbon dioxide. Nature 440, 659–662 (2006).

    Article  Google Scholar 

  29. Dasgupta, R. et al. Carbon-dioxide-rich silicate melt in the Earth’s upper mantle. Nature 493, 211–215 (2013).

    Article  Google Scholar 

  30. Dasgupta, R., Hirschmann, M. M., McDonough, W. F., Spiegelman, M. & Withers, A. C. Trace element partitioning between garnet lherzolite and carbonatite at 6.6 and 8.6 GPa with applications to the geochemistry of the mantle and of mantle-derived melts. Chem. Geol. 262, 57–77 (2009).

    Article  Google Scholar 

  31. Hirschmann, M. M. Water, melting, and the deep Earth H2O cycle. Annu. Rev. Earth. Planet. Sci. 34, 629–653 (2006).

    Article  Google Scholar 

  32. Karato, S-I. Remote sensing of hydrogen in Earth’s mantle. Rev. Mineral. Geochem. 62, 343–375 (2006).

    Article  Google Scholar 

  33. Hall, P. S. & Kincaid, C. Melting, dehydration, and the dynamics of off-axis plume–ridge interaction. Geochem. Geophys. Geosyst. 4, 8510 (2003).

    Article  Google Scholar 

  34. Harpp, K. S. & White, W. M. Tracing a mantle plume: Isotopic and trace element variations of Galápagos seamounts. Geochem. Geophys. Geosyst. 2, 1042 (2001).

    Article  Google Scholar 

  35. Hoernle, K. et al. Existence of complex spatial zonation in the Galápagos plume. Geology 28, 435–438 (2000).

    Article  Google Scholar 

  36. White, W. M., McBirney, A. R. & Duncan, R. A. Petrology and geochemistry of the Galápagos Islands: Portrait of a pathological mantle plume. J. Geophys. Res. 98, 19533–19563 (1993).

    Article  Google Scholar 

  37. Geist, D. et al. Wolf Volcano, Galapagos Archipelago: Melting and magmatic evolution at the margins of a mantle plume. J. Petrol. 46, 2197–2224 (2005).

    Article  Google Scholar 

  38. Gibson, S. A. & Geist, D. Geochemical and geophysical estimates of lithospheric thickness variation beneath Galápagos. Earth Planet. Sci. Lett. 300, 275–286 (2010).

    Article  Google Scholar 

  39. Geist, D. J., White, W. M. & McBirney, A. R. Plume-asthenosphere mixing beneath the Galapagos archipelago. Nature 333, 657–660 (1988).

    Article  Google Scholar 

  40. Graham, D. W., Christie, D. M. & Harpp, K. S. Mantle plume helium in submarine basalts from the Galápagos platform. Science 262, 2023–2026 (1993).

    Article  Google Scholar 

  41. Colin, A., Burnard, P. G., Graham, D. W. & Marrocchi, Y. Plume-ridge interaction along the Galapagos Spreading Center: Discerning between gas loss and source effects using neon isotopic compositions and 4He–40Ar–CO2 relative abundances. Geochim. Cosmochim. Acta 75, 1145–1160 (2011).

    Article  Google Scholar 

  42. Hofmann, A. W., Farnetani, C. G., Spiegelman, M. & Class, C. Displaced helium and carbon in the Hawaiian plume. Earth Planet. Sci. Lett. 312, 226–236 (2011).

    Article  Google Scholar 

  43. Weis, D., Garcia, M. O., Rhodes, J. M., Jellinek, M. & Scoates, J. S. Role of the deep mantle in generating the compositional asymmetry of the Hawaiian mantle plume. Nature Geosci. 4, 831–838 (2011).

    Article  Google Scholar 

  44. Huang, S., Hall, P. S. & Jackson, M. G. Geochemical zoning of volcanic chains associated with Pacific hotspots. Nature Geosci. 4, 874–878 (2011).

    Article  Google Scholar 

  45. Richards, M. A. & Griffiths, R. W. Thermal entrainment by deflected mantle plumes. Nature 342, 900–902 (1989).

    Article  Google Scholar 

  46. Ito, G., Lin, J. & Gable, C. W. Interaction of mantle plumes and migrating mid-ocean ridges: Implications for the Galápagos plume–ridge system. J. Geophys. Res. 102, 15403–15417 (1997).

    Article  Google Scholar 

  47. Hammond, W. C. & Toomey, D. R. Seismic velocity anisotropy and heterogeneity beneath the Mantle Electromagnetic and Tomography Experiment (MELT) region of the East Pacific Rise from analysis of P and S body waves. J. Geophys. Res. 108, 2176 (2003).

    Article  Google Scholar 

  48. Geist, D. J. et al. Submarine Fernandina: Magmatism at the leading edge of the Galápagos hot spot. Geochem. Geophys. Geosyst. 7, Q12007 (2006).

    Article  Google Scholar 

  49. Workman, R. K. & Hart, S. R. Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet. Sci. Lett. 231, 53–72 (2005).

    Article  Google Scholar 

  50. Sun, S. S. & McDonough, W. F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Lond. Spec. Pub. 42, 313–345 (1989).

    Article  Google Scholar 

Download references

Acknowledgements

We thank Minard Hall of the Instituto Geofı´sico of the Escuela Politécnica Nacional in Quito, the Charles Darwin Research Station, and the Parque Nacional Galápagos for logistical support and assistance in the field. M. Jackson provided constructive comments that improved this paper. This research was supported by the National Science Foundation under grants OCE-9908695, OCE-0221549, and EAR-0651123 to the University of Oregon, OCE-0221634 to the Carnegie Institution of Washington, and EAR-11452711 to the University of Idaho.

Author information

Authors and Affiliations

Authors

Contributions

D.R.V., D.R.T. and D.J.G. wrote the initial manuscript. D.R.V., D.R.T., E.E.E.H. and S.C.S. contributed to experiment design and collection of seismic data. D.R.V., D.R.T. and E.E.E.H. contributed to the analysis of seismic data and methods development. D.J.G. contributed to the petrologic calculations and to the development of geochemical models. All authors discussed the results and their implications and assisted in the final revisions to the manuscript.

Corresponding author

Correspondence to Douglas R. Toomey.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2748 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Villagómez, D., Toomey, D., Geist, D. et al. Mantle flow and multistage melting beneath the Galápagos hotspot revealed by seismic imaging. Nature Geosci 7, 151–156 (2014). https://doi.org/10.1038/ngeo2062

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2062

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing