Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Millennial-scale record of landslides in the Andes consistent with earthquake trigger

Abstract

Geologic records of landslide activity offer rare glimpses into landscapes evolving under the influence of tectonics and climate. Because the deposits of individual landslides are unlikely to be preserved, landslide activity in the geologic past is often reconstructed by extrapolating from historic landslide inventories. Landslide deposits have been interpreted as palaeoclimate proxies relating to changes in precipitation, although earthquakes can also trigger landslides. Here we measure cosmogenic 10Be concentrations in individual cobbles from the modern Quebrada Veladera river channel and an adjacent terrace in Peru and calculate erosion rates. We find, in conjunction with a 10Be production model, that the 10Be concentrations of each cobble population record erosion integrated over thousands of years and are consistent with a landslide origin for the cobbles. The distribution of 10Be concentrations in terrace cobbles produced during the relatively wet climate before about 16,000 years ago is indistinguishable from the distribution in river channel cobbles produced during the drier climate of the past few thousand years. This suggests that the amount of erosion from landslides has not changed in response to climatic changes. Instead, our integrated, millennial-scale record of landslides implies that earthquakes may be the primary landslide trigger in the arid foothills of Peru.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Geologic and geomorphic maps of Quebrada Veladera.
Figure 2: Distributions of single-clast 10Be concentrations.
Figure 3: Model results.
Figure 4: Model results for a range of values of the landslide scaling exponent.
Figure 5: Site-by-site comparison of 10Be concentrations of different grain sizes.

Similar content being viewed by others

References

  1. Larsen, I. J. & Montgomery, D. R. Landslide erosion coupled to tectonics and river incision. Nature Geosci. 5, 468–473 (2012).

    Article  Google Scholar 

  2. Wieczorek, G. F. in Landslides: Investigation and Mitigation (eds Turner, A. K. & Schuster, R. L.) 76–90 (Transportation Research Board, 1996).

    Google Scholar 

  3. Paolini, L., Villalba, R. & Grau, H. R. Precipitation variability and landslide occurrence in a subtropical mountain ecosystem of NW Argentina. Dendrochronologia 22, 175–180 (2005).

    Article  Google Scholar 

  4. Crozier, M. J. Deciphering the effect of climate change on landslide activity: A review. Geomorphology 124, 260–267 (2010).

    Article  Google Scholar 

  5. Hermanns, R., Trauth, M. H., McWilliams, M. & Strecker, M. R. Tephrochronologic constraints on temporal distribution of large landslides in NW Argentina. J. Geol. 108, 35–52 (2000).

    Article  Google Scholar 

  6. Trauth, M. H., Alonso, R. A., Haselton, K. R., Hermanns, R. L. & Strecker, M. R. Climate change and mass movements in the NW Argentine Andes. Earth Planet. Sci. Lett. 179, 243–256 (2000).

    Article  Google Scholar 

  7. Keefer, D. K., Moseley, E. M. & deFrance, S. D. A 38,000-year record of floods and debris flows in the Ilo region of southern Peru and its relation to El Niño events and great earthquakes. Palaeogeog. Palaeoclimatol. Palaeoecol. 194, 41–77 (2003).

    Article  Google Scholar 

  8. Trauth, M. H., Bookhagen, B., Marwan, N. & Strecker, M. H. Multiple landslide cluster record Quaternary climate changes in the northwestern Argentine Andes. Palaeogeog. Palaeoclimatol. Palaeoecol. 194, 109–121 (2003).

    Article  Google Scholar 

  9. Steffen, D., Schlunegger, F. & Preusser, F. Drainage basin response to climate change in the Pisco valley, Peru. Geology 37, 491–494 (2009).

    Article  Google Scholar 

  10. McPhillips, D., Bierman, P. R., Crocker, T. & Rood, D. H. Landscape response to Pleistocene–Holocene precipitation change in the Western Cordillera, Peru: 10Be concentrations in modern sediments and terrace fills. J. Geophys. Res. Earth Surf. 118, 1–12 (2013).

    Article  Google Scholar 

  11. Baker, P. A. et al. Tropical climate changes at millennial and orbital timescales on the Bolivian Altiplano. Nature 409, 698–701 (2001).

    Article  Google Scholar 

  12. Rein, B. et al. Niño variability off Peru during the last 20,000 years. Paleooceanography 20, 1–17 (2005).

    Article  Google Scholar 

  13. Chepstow-Lusty, A. et al. Vegetation and climate change on the Bolivian Altiplano between 108,000 and 18,000 years ago. Quat. Res. 63, 90–98 (2005).

    Article  Google Scholar 

  14. Placzek, C., Quade, J. & Patchett, P. J. Geochronology and stratigraphy of late Pleistocene lake cycles on the southern Bolivian Altiplano: Implications for causes of tropical climate change. Geol. Soc. Am. Bull. 118, 515–532 (2006).

    Article  Google Scholar 

  15. Klein, A. G., Seltzer, G. O. & Isacks, B. L. Modern and last local glacial maximum snowlines in the Central Andes of Peru, Bolivia, and Northern Chile. Quat. Sci. Rev. 18, 63–84 (1999).

    Article  Google Scholar 

  16. Ramage, J. M., Smith, J. A., Rodbell, D. T. & Seltzer, G. O. Comparing reconstructed Pleistocene equilibrium line altitudes in the tropical Andes of central Peru. J. Quat. Sci. 20, 777–788 (2005).

    Article  Google Scholar 

  17. Bekaddour, T. et al. Paleo erosion rates and climate shifts recorded by Quaternary cut-and-fill sequences in the Pisco valley, central Peru. Earth Planet. Sci. Lett. 390, 103–115 (2014).

    Article  Google Scholar 

  18. Bierman, P. R. & Nichols, K. K. Rock to sediment-slope to sea with 10Be rates of landscape change. Annu. Rev. Earth Planet. Sci. 32, 215–255 (2004).

    Article  Google Scholar 

  19. Von Blanckenburg, F. The control mechanisms of erosion and weathering at basin scale from cosmogenic nuclides in river sediment. Earth Planet. Sci. Lett. 237, 462–479 (2005).

    Article  Google Scholar 

  20. Codilean, A. T. et al. Single-grain cosmogenic 21Ne concentrations in fluvial sediments reveal spatially variable erosion rates. Geology 36, 159–162 (2008).

    Article  Google Scholar 

  21. Gayer, E., Mukhopadhyay, S. & Meade, B. J. Spatial variability of erosion rates inferred from the frequency distribution of cosmogenic 3He in olivines from Hawaiian river sediments. Earth Planet. Sci. Lett. 266, 303–315 (2008).

    Article  Google Scholar 

  22. Niemi, N., Oskin, A. M., Burbank, D. W., Heimsath, A. M. & Gabet, E. J. Effects of bedrock landslides on cosmogenically determined erosion rates. Earth Planet. Sci. Lett. 237, 480–498 (2005).

    Article  Google Scholar 

  23. Yanites, B. J., Tucker, G. E. & Anderson, R. S. Numerical and analytical models of cosmogenic radionuclide dynamics in landslide-dominated drainage basins. J. Geophys. Res. 114, F01007 (2009).

    Article  Google Scholar 

  24. West, A. J. et al. Dilution of 10Be in detrital quartz by earthquake-induced landslides: Implications for determining denudation rates and potential to provide insights into landslide sediment dynamics. Earth Planet. Sci. Lett. 396, 143–153 (2014).

    Article  Google Scholar 

  25. Schaller, M. et al. A 30,000 yr record of erosion rates from cosmogenic 10Be in middle European river terraces. Earth Planet. Sci. Lett. 204, 307–320 (2002).

    Article  Google Scholar 

  26. Balco, G., Stone, J. O., Lifton, N. A. & Dunai, T. J. A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements. Quat. Geochronol. 3, 174–195 (2008).

    Article  Google Scholar 

  27. Abbühl, L. M. et al. Erosion rates and mechanisms of knickzone retreat inferred from 10Be measured across strong climate gradients on the northern and central Andes Western Escarpment. Earth Surf. Process. Landf. 36, 1464–1473 (2011).

    Article  Google Scholar 

  28. Turcotte, D. L., Malamud, B. D., Guzzetti, F. & Reichenbach, P. Self-organization, the cascade model, and natural hazards. Proc. Natl Acad. Sci. USA 99, 2530–2537 (2002).

    Article  Google Scholar 

  29. Brunetti, M. T., Guzzetti, F. & Rossi, M. Probability distributions of landslide volumes. Nonlinear Process. Geophys. 16, 179–188 (2009).

    Article  Google Scholar 

  30. Mettier, R., Schlunegger, F., Schneider, H., Rieke-Zapp, D. & Schwab, M. Relationships between landscape morphology, climate and surface erosion in northern Peru at 5° S latitude. Int. J. Earth Sci. 98, 2009–2022 (2009).

    Article  Google Scholar 

  31. Rodbell, D. T. et al. An 15,000-year record of El Niño-driven alluviation in southwestern Ecuador. Science 283, 516–520 (1999).

    Article  Google Scholar 

  32. Molnar, P. Climate change, flooding in arid environments, and erosion rates. Geology 29, 1071–1074 (2001).

    Article  Google Scholar 

  33. Molnar, P., Anderson, R. S., Kier, G. & Rose, J. Relationships among probability distributions of stream discharges in floods, climate, bed load transport, and river incision. J. Geophys. Res. 111, F02001 (2006).

    Article  Google Scholar 

  34. Pritchard, M. E. & Fielding, E. J. A study of the 2006 and 2007 earthquake sequence of Pisco, Peru, with InSAR and teleseismic data. Geophys. Res. Lett. 35, L09308 (2008).

    Google Scholar 

  35. Tavera, H. & Bernal, I. The Pisco (Peru) earthquake of 15 August 2007. Seismol. Res. Lett. 79, 510–515 (2008).

    Article  Google Scholar 

  36. Malamud, B. D., Turcotte, D. L., Guzzetti, F. & Reichenbach, P. Landslides, earthquakes, and erosion. Earth Planet. Sci. Lett. 229, 45–59 (2004).

    Article  Google Scholar 

  37. Keefer, D. K. & Moseley, M. E. Southern Peru desert shattered by the great 2001 earthquake: Implications for paleoseismic and paleo-El Niño—Southern Oscillation records. Proc. Natl Acad. Sci. USA 101, 10878–10883 (2004).

    Article  Google Scholar 

  38. Dorbath, L., Cisternas, A. & Dorbath, C. Assessment of the size of large and great historical earthquakes in Peru. B Seismol. Soc. Am. 80, 551–576 (1990).

    Google Scholar 

  39. Keefer, D. K. The importance of earthquake-induced landslides to long-term slope erosion and slope failure in seismically active regions. Geomorphology 10, 265–284 (1994).

    Article  Google Scholar 

  40. Xu, S., Dougans, A. B., Freeman, S. P., Schnabel, C. & Wilcken, K. M. Improved 10Be and 26Al-AMS with a 5MV spectrometer. Nucl. Instrum. Methods B 268, 736–738 (2010).

    Article  Google Scholar 

  41. Nishiizumi, K. Absolute calibration of 10Be AMS standards. Nucl. Instrum. Methods B 258, 403–413 (2007).

    Article  Google Scholar 

  42. Chmeleff, J., von Blanckenburg, F., Kossert, K. & Jakob, D. Determination of the 10Be half-life by multicollector ICP-MS and liquid scintillation counting. Nucl. Instrum. Methods B 268, 192–199 (2010).

    Article  Google Scholar 

  43. Davila, M. F. (ed.) in Mapa Geologico del Cuadrangula de Guadalupe, 1:100,000 (Ministerio de Energia y Minas, Lima, 1979).

  44. Diaz, H. S. & Landa, C. (eds) in Mapa Geologico del Cuadrangula de Tantara 1:100,000 (Ministerio de Energia y Minas, Lima, 1970).

Download references

Acknowledgements

The work was supported by National Science Foundation grant EAR-1049300 (D.M.). M. Sweeney assisted with fieldwork and analysed clast count data. N. Niemi provided a constructive review.

Author information

Authors and Affiliations

Authors

Contributions

D.M. conceived the study in collaboration with P.R.B.; D.M. wrote the manuscript, which P.R.B. and D.H.R. edited; D.M. carried out fieldwork, 10Be extraction, and modelling; P.R.B. supervised the 10Be extraction; D.H.R. performed accelerator mass spectrometry.

Corresponding author

Correspondence to Devin McPhillips.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 4259 kb)

Supplementary Information

Supplementary Information (XLSX 64 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McPhillips, D., Bierman, P. & Rood, D. Millennial-scale record of landslides in the Andes consistent with earthquake trigger. Nature Geosci 7, 925–930 (2014). https://doi.org/10.1038/ngeo2278

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2278

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing