Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Impact of Arctic meltdown on the microbial cycling of sulphur

Abstract

The Arctic is warming faster than any other region in the world. Among the changes already witnessed, the loss of seasonal sea ice is by far the most striking. This large-scale shift in sea-ice cover could affect oceanic emissions of dimethylsulphide — a climate-relevant trace gas generated by ice algae and phytoplankton. During the spring melt period, conditions at the margin of Arctic sea ice favour the growth of these organisms. As a result, high levels of dimethylsulphide can accumulate at the bottom of the ice, in leads, and in the water column at the ice edge during the spring melt season. Production of dimethylsulphide is not limited to the sea-ice edge, however. Significant concentrations have also been detected in the seasonal ice-free zone in spring and summer. Preliminary observations, together with model results, suggest that the production and emission of dimethylsulphide will increase in the Arctic as seasonal sea-ice cover recedes. If it escapes to the atmosphere, this newly generated dimethylsulphide could potentially cool the Arctic climate.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Examples of the diversity of habitats found in the Arctic.
Figure 2: Diversified biota present in the Arctic in spring and summer.
Figure 3: Map of the Arctic showing the general locations (white boxes) of the studies where marine dimethylsulphoniopropionate and/or dimethylsulphide measurements have been conducted.
Figure 4: Schematic representation of the microbial cycling of dimethylsulphide in the ocean.
Figure 5: Vertical distribution of dimethylsulphide (DMS) in a sea ice core from the Arctic Canadian shelf and associated concentrations of particulate and dissolved dimethylsulfoniopropionate (DMSP) at the bottom of the ice.
Figure 6: Latitudinal variations in sea-ice conditions, dimethylsulphide (DMS) and related variables during the 1994 Arctic Ocean Section expedition from 26 July to 26 August 1994 on board the USCGC Polar Sea.

References

  1. Kettle, A. J. & Andreae, M. O. Flux of dimethylsulfide from the oceans: a comparison of updated data sets and flux models. J. Geophys. Res. 105, 26793–26808 (2000).

    Article  Google Scholar 

  2. Charlson, R. J., Lovelock, J. E., Andreae, M. O. & Warren, S. G. Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature 326, 655–661 (1987).

    Article  Google Scholar 

  3. Quinn, P. K. & Bates, T. S. The case against climate regulation via oceanic phytoplankton sulphur emissions. Nature 480, 51–56 (2011).

    Article  Google Scholar 

  4. Woodhouse, M. T., Mann, G. W., Carslaw, K. S. & Boucher, O. Sensitivity of cloud condensation nuclei to regional changes in the dimethyl-sulfide emissions. Atmos. Chem. Phys. 13, 2723–2733 (2013).

    Article  Google Scholar 

  5. Chang, R. Y-W. et al. Relating atmospheric and oceanic DMS levels to particle nucleation events in the Canadian Arctic. J. Geophys. Res. 116, D00S03 (2011).

    Google Scholar 

  6. Tunved, P., Ström, J. & Krejci, R. Arctic aerosol life cycle: linking aerosol size distribution observed between 2000 and 2010 with air mass transport and precipitation at Zeppelin station, Ny-Alesund, Svalbard. Atmos. Chem. Phys. 13, 3643–3660 (2013).

    Article  Google Scholar 

  7. Perovich, D. K. et al. Increasing solar heating of the Arctic Ocean and adjacent seas, 1979–2005: attribution and role in the ice-albedo feedback. Geophys. Res. Lett. 34, L19505 (2007).

    Article  Google Scholar 

  8. Zhang, J. L. et al. Modeling the impact of declining sea ice on the Arctic marine planktonic ecosystem. J. Geophys. Res. 115, C10015 (2010).

    Article  Google Scholar 

  9. Gabric, A. J., Qu, B., Matrai, P. & Hirst, A. The simulated response of dimethylsulfide production in the Arctic Ocean to global warming. Tellus B 57, 391–403 (2005).

    Article  Google Scholar 

  10. Qu, B. & Gabric, A. Using genetic algorithm to calibrate a dimethylsulfide production model in the Arctic Ocean. Chin. J. Oceanol. Limnol. 28, 573–582 (2010).

    Article  Google Scholar 

  11. Wassmann, P., Duarte, C. M., Agustí, S. & Sejr, M. K. Footprints of climate change in the Arctic marine ecosystem. Glob. Change Biol. 17, 1235–1249 (2011).

    Article  Google Scholar 

  12. Overland, J. E. & Wang, M. Future regional Arctic sea ice declines. Geophys. Res. Lett. 34, L17705 (2007).

    Article  Google Scholar 

  13. Arrigo, K. R. et al. Massive phytoplankton blooms under the Arctic sea ice. Science 336, 1408 (2012).

    Article  Google Scholar 

  14. Frey, K. E., Perovich, D. K. & Light, B. The spatial distribution of solar radiation under a melting Arctic sea ice cover. Geophys. Res. Lett. 38, L22501 (2011).

    Article  Google Scholar 

  15. Staubes, R. & Georgii, H-W. in Dimethylsulfide: Oceans, Atmosphere and Climate (eds Restelli, G. & Angeletti, G.) 95–102 (ECSC-EEC-EAEC, 1993).

    Book  Google Scholar 

  16. Levasseur, M., Gosselin, M. & Michaud, S. A new source of dimethylsulfide (DMS) for the arctic atmosphere: ice diatoms. Mar. Biol. 121, 381–387 (1994).

    Article  Google Scholar 

  17. Keller, M. D., Bellows, W. K. & Guillard, R. R. L. in Biogenic Sulfur in the Environment (eds Saltzman, E. & Cooper, W. J.) 167–182 (American Chemical Society, 1989).

    Book  Google Scholar 

  18. Steinke, M., Wolfe, G. V. & Kirst, G. O. Partial characterisation of dimethylsulfoniopropionate (DMSP) lyase isozymes in 6 strains of Emiliania huxleyi. Mar. Ecol. Prog. Ser. 175, 215–225 (1998).

    Article  Google Scholar 

  19. Niki, T., Kunugi, M. & Otsuki, A. DMSP-lyase activity in five marine phytoplankton species: its potential importance in DMS production. Mar. Biol. 136, 759–764 (2000).

    Article  Google Scholar 

  20. Stefels, J. & Dijkhuizen, L. Characteristics of DMSP-lyase in Phaeocystis sp. (Prymnesiophyceae). Mar. Ecol. Prog. Ser. 131, 307–313 (1996).

    Article  Google Scholar 

  21. Kiene, R. P. & Slezak, D. Low dissolved DMSP concentrations in seawater revealed by small-volume gravity filtration and dialysis sampling. Limnol. Oceanogr. Meth. 4, 80–95 (2006).

    Article  Google Scholar 

  22. Kiene, R. P. & Linn, L. J. The fate of dissolved dimethylsulfoniopropionate (DMSP) in seawater: tracer studies using 35S-DMSP. Geochim. Cosmochim. Acta 64, 2797–2810 (2000).

    Article  Google Scholar 

  23. Vila-Costa, M. et al. Dimethylsulfoniopropionate uptake by marine phytoplankton. Science 314, 652–654 (2006).

    Article  Google Scholar 

  24. Malmstrom, R. R., Kiene, R. P., Vila, M. & Kirchman, D. L. Dimethylsulfoniopropionate (DMSP) assimilation by Synechococcus in the Gulf of Mexico and northwest Atlantic Ocean. Limnol. Oceanogr. 50, 1924–1931 (2005).

    Article  Google Scholar 

  25. Kiene, R. P., Linn, L. J. & Bruton, J. A. New and important roles for DMSP in marine microbial communities. J. Sea Res. 43, 209–224 (2000).

    Article  Google Scholar 

  26. Yoch, D. C. Dimethylsulfoniopropionate: its sources, role in the marine food web, and biological degradation to dimethylsulfide. Appl. Environ. Microbiol. 68, 5804–5815 (2002).

    Article  Google Scholar 

  27. Simó, R., Archer, S. D., Pedrós-Alió, C., Gilpin, L. & Stelfox-Widdicombe, C. E. Coupled dynamics of dimethylsulfoniopropionate and dimethylsulfide cycling and the microbial food web in surface waters of the North Atlantic. Limnol. Oceanogr. 47, 53–61 (2002).

    Article  Google Scholar 

  28. Todd, J. et al. Structural and regulatory genes required to make the gas dimethyl sulfide in bacteria. Science 315, 666–669 (2007).

    Article  Google Scholar 

  29. Stefels, J., Steinke, M., Turner, S., Malin, G. & Belviso, S. Environmental constraints on the production and removal of the climatically active gas dimethylsulphide (DMS) and implications for ecosystem modeling. Biogeochemistry 83, 245–275 (2007).

    Article  Google Scholar 

  30. Wolfe, G. V., Levasseur, M., Cantin, G. & Michaud, S. Microbial consumption and production of dimethyl sulfide (DMS) in the Labrador Sea. Aquat. Microb. Ecol. 18, 197–205 (1999).

    Article  Google Scholar 

  31. Simó, R. From cells to globe: approaching the dynamics of DMS(P) in the ocean at multiple scales. Can. J. Fish. Aquat. Sci. 61, 673–684 (2004).

    Article  Google Scholar 

  32. Bates, T. S. et al. The cycling of sulfur in surface waters of the Northeast Pacific. J. Geophys. Res. 99, 7835–7843 (1994).

    Article  Google Scholar 

  33. Sunda, W., Kieber, D. J., Kiene, R. P. & Huntsman, S. An antioxidant function for DMSP and DMS in marine algae. Nature 418, 317–320 (2002).

    Article  Google Scholar 

  34. Simó, R. & Pedrós-Alió, C. Role of vertical mixing in controlling the oceanic production of dimethyl sulphide. Nature 402, 396–399 (1999).

    Article  Google Scholar 

  35. Toole, D. A. & Siegel, D. A. Light-driven cycling of dimethylsulfide (DMS) in the Sargasso Sea: closing the loop. Geophys. Res. Lett. 31, L09308 (2004).

    Google Scholar 

  36. Liss, P. S. et al. in Ocean–Atmosphere Interactions of Gases and Particles (eds Liss, P. S. & Johnson, M. T.) (Springer, in the press).

  37. Matrai, P. A. & Vernet, M. Dynamics of the vernal bloom in the marginal ice zone of the Barents Sea: dimethyl sulfide and dimethylsulfoniopropionate budgets. J. Geophys. Res. 102, 22965–22979 (1997).

    Article  Google Scholar 

  38. Garneau, M-E., Roy, S., Lovejoy, C., Gratton, Y. & Vincent, W. F. Seasonal dynamics of bacterial biomass and production in a coastal arctic ecosystem: Franklin Bay, western Canadian Arctic. J. Geophys. Res. 113, C07S91 (2008).

    Article  Google Scholar 

  39. Gosselin, M., Legendre, L., Demers, S. & Ingram R. G. Responses of sea ice microalgae to climatic and fortnightly tidal energy inputs (Manitounuk Sound, Hudson Bay). Can. J. Fish. Aquat. Sci. 42, 999–1006 (1985).

    Article  Google Scholar 

  40. Lavoie, D., Denman, K. & Michel, C. Modeling ice algal growth and decline in a seasonally ice-covered region of the Arctic (Resolute Passage, Canadian Archipelago). J. Geophys. Res. 110, C11009 (2005).

    Article  Google Scholar 

  41. Gradinger, R. Sea ice algae: major contributors to primary production and algal biomass in the Chukchi and Beaufort seas during May/June 2002. Deep-Sea Res. II 56, 1201–1212 (2009).

    Article  Google Scholar 

  42. Matrai, P. & Apollonio, S. New estimates of microalgae production based upon nitrate reductions under sea ice in the Canadian shelf seas and the Canada Basin of the Arctic Ocean. Mar. Biol. 160, 1297–1309 (2013).

    Article  Google Scholar 

  43. Różańska, M., Gosselin, M., Poulin, M., Wiktor, J. M. & Michel, C. Influence of environmental factors on the development of bottom ice protist communities during the winter-spring transition. Mar. Ecol. Prog. Ser. 386, 43–59 (2009).

    Article  Google Scholar 

  44. Deal, C. et al. Large-scale modeling of primary production and ice algal biomass within Arctic sea ice in 1992. J. Geophys. Res. 116, C07004 (2011).

    Article  Google Scholar 

  45. Fortier, M., Fortier, L., Michel, C. & Legendre, L. Climatic and biological forcing of the vertical flux of biogenic particles under seasonal Arctic sea ice. Mar. Ecol. Prog. Ser. 225, 1–16 (2002).

    Article  Google Scholar 

  46. Michel, C., Legendre, L., Ingram, G., Gosselin, M. & Levasseur, M. Carbon budget of sea ice algae in spring: evidence of a significant transfer to zooplankton grazers. J. Geophys. Res. 101, 18345–18360 (1996).

    Article  Google Scholar 

  47. Bouillon, R-C., Lee, P. A., de Mora, S. J., Levasseur, M. & Lovejoy, C. Vernal distribution of dimethylsulphide, dimethylsulphoniopropionate, and dimethylsulphoxide in the North Water in 1998. Deep-Sea Res. II 49, 5171–5189 (2002).

    Article  Google Scholar 

  48. Lee, P. A. et al. Particulate dimethylsulfoxide in Arctic sea ice algal communities: the cryoprotectant hypothesis revisited. J. Phycol. 37, 488–499 (2001).

    Article  Google Scholar 

  49. Uzuka, M. A Time series observation of DMSP production in the fast ice zone near Barrow (extended abstract). Tôhoku Geophys. J. 36, 439–442 (2003).

    Google Scholar 

  50. Asher, E. C., Dacey, J. W. H., Mills, M. M., Arrigo, K. R. & Tortell, P. D. High concentrations and turnover rates of DMS, DMSP and DMSO in Antarctic sea ice. Geophys. Res. Lett. 38, L23609 (2011).

    Article  Google Scholar 

  51. Trevena, A. J. & Jones, G. B. Dimethylsulphide and dimethylsulfoniopropionate in Antarctic sea ice and their release during sea ice melting. Mar. Chem. 98, 210–222 (2006).

    Article  Google Scholar 

  52. Delille, B. et al. Biogas (CO2, O2, dimethylsulfide) dynamics in spring Antarctic fast ice. Limnol. Oceanogr. 52, 1367–1379 (2007).

    Article  Google Scholar 

  53. Tison, J-L., Brabant, F., Dumont, I. & Stefels, J. High-resolution dimethyl sulfide and dimethylsulfoniopropionate time series profiles in decaying summer first-year sea ice at Ice Station Polarstern, western Weddell Sea, Antarctica. J. Geophys. Res. 115, G04044 (2010).

    Article  Google Scholar 

  54. Gosselin, M. et al. The 1994 Arctic Ocean Section: The First Major Scientific Crossing of the Arctic Ocean (eds Tucker, T. & Cate, D.) 42–44 (US Army Cold Regions Research and Engineering Laboratory, Special Report 96–23, 1996).

    Google Scholar 

  55. Gilson, G. Composition en DMS et Composés Soufrés Associés de la Glace de Mer Annuelle Arctique en Mer de Beaufort (CFL, Canada) et Implication pour les Flux de DMS vers l'Atmosphère (Université Libre de Bruxelles, 2010).

    Google Scholar 

  56. Leck, C. & Persson, C. The central Arctic Ocean as a source of dimethyl sulfide: seasonal variability in relation to biological activity. Tellus B 48, 156–177 (1996).

    Article  Google Scholar 

  57. Lüthje, M., Feltham, D. L., Taylor, P. D. & Worster, M. G. Modeling the summertime evolution of sea ice melt ponds. J. Geophys. Res. 111, 1–17 (2006).

    Article  Google Scholar 

  58. Sharma, S. et al. Flux estimation of oceanic dimethyl sulfide around north America. J. Geophys. Res. 104, 21327–21342 (1999).

    Article  Google Scholar 

  59. Gradinger, R. Occurrence of an algal bloom under Arctic pack ice. Mar. Ecol. Prog. Ser. 131, 301–305 (1996).

    Article  Google Scholar 

  60. Stabeno, P. J., Schumacher, J. D., Davis, R. F. & Napp, J. M. Under-ice observations of water column temperature, salinity and spring phytoplankton dynamics: Eastern Bering Sea. J. Mar. Res. 56, 239–255 (1998).

    Article  Google Scholar 

  61. Lee, S. H. et al. Holes in progressively thinning Arctic sea ice lead to new ice algae habitat. Oceanography 24, 302–308 (2011).

    Article  Google Scholar 

  62. Apollonio, S. & Matrai, P. Marine primary production in the Canadian Arctic, 1956, 1961–1963 Polar. Biol. 34, 767–774 (2011).

    Article  Google Scholar 

  63. Booth, B. C. & Horner, R. A. Microalgae on the Arctic Ocean Section, 1994: species abundance and biomass. Deep-Sea Res. II 44, 1607–1622 (1997).

    Article  Google Scholar 

  64. Boetius, A. et al. Export of algal biomass from the melting Arctic sea ice. Science 339, 1430–1432 (2013).

    Article  Google Scholar 

  65. Perrette, M., Yool, A., Quartly, G. D. & Popova, E. E. Near-ubiquity of ice-edge blooms in the Arctic. Biogeosci. Discuss. 7, 8123–8142 (2010).

    Article  Google Scholar 

  66. Qu, B., Gabric, A. J. & Matrai, P. The satellite-derived distribution of chlorophyll a and its relation to ice cover, radiation and sea surface temperature in the Barents Sea. Polar Biol. 29, 196–210 (2005).

    Article  Google Scholar 

  67. Mundy, C. J. et al. Contribution of under-ice primary production to an ice-edge upwelling phytoplankton bloom in the Canadian Beaufort Sea. Geophys. Res. Lett. 36, L17601 (2009).

    Article  Google Scholar 

  68. Galí, M. & Simó, R. Occurrence and cycling of dimethylated sulfur compounds in the Arctic during summer receding ice edge. Mar. Chem. 122, 105–117 (2010).

    Article  Google Scholar 

  69. Tremblay, J-É. et al. Climate forcing multiplies biological productivity in the coastal Arctic Ocean. Geophys. Res. Lett. 38, L18604 (2011).

    Article  Google Scholar 

  70. Elliott, S. et al. Pan-Arctic simulation of coupled nutrient-sulfur cycling due to sea ice biology: preliminary results. J. Geophys. Res. 117, G01016 (2012).

    Google Scholar 

  71. Popova, E. E. et al. What controls primary production in the Arctic Ocean? Results from an intercomparison of five general circulation models with biogeochemistry. J. Geophys. Res. 117, C00D12 (2012).

    Article  Google Scholar 

  72. Matrai, P. A., Vernet, M. & Wassmann, P. Relating temporal and spatial patterns of DMSP in the Barents Sea to phytoplankton biomass and productivity. J. Mar. Syst. 67, 83–101 (2007).

    Article  Google Scholar 

  73. Motard-Côté, J. et al. Distribution and metabolism of dimethylsulfoniopropionate (DMSP) and phylogenetic affiliation of DMSP-assimilating bacteria in northern Baffin Bay/Lancaster Sound. J. Geophys. Res. 117, C00G11 (2012).

    Article  Google Scholar 

  74. Luce, M. et al. Distribution and microbial metabolism of dimethylsulfoniopropionate and dimethylsulfide during the 2007 Arctic ice minimum. J. Geophys. Res. 116, C00G06 (2011).

    Article  Google Scholar 

  75. Park, K-T. et al. Linking atmospheric dimethyl sulfide and the Arctic Ocean spring bloom. Geophys. Res. Lett. 40, 1–6 (2013).

    Article  Google Scholar 

  76. Humphries, G. R. W., Deal, C. J., Elliott, S. & Huettmann, F. Spatial predictions of sea surface dimethylsulfide concentrations in the high Arctic. Biogeochemistry 110, 287–301 (2012).

    Article  Google Scholar 

  77. Gabric, A. J., Simó, R., Crop, R. A., Hirst, A. C. & Dachs, J. Modeling estimates of the global emission of dimethylsulfide under enhanced greenhouse conditions. Glob. Biogeochem. Cycles 18, GB2014 (2004).

    Google Scholar 

  78. Intrieri, J. M. et al. An annual cycle of Arctic surface cloud forcing at SHEBA. J. Geophys. Res. 107, C108039 (2001).

    Google Scholar 

  79. Coupel, P. et al. Phytoplankton distribution in unusually low sea ice cover over the Pacific Arctic. Biogeosciences 9, 4835–4850 (2012).

    Article  Google Scholar 

  80. Li, W. K. W., McLaughlin, F. A., Lovejoy, C. & Carmack, E. C. Smallest algae thrive as the Arctic Ocean freshens. Science 326, 539 (2009).

    Article  Google Scholar 

  81. Hegseth, E. N. & Sundfjord, A. Intrusion and blooming of Atlantic phytoplankton species in the high Arctic. J. Mar. Syst. 74, 108–119 (2008).

    Article  Google Scholar 

  82. Harada, N. et al. Enhancement of coccolithophorid blooms in the Bering Sea by recent environmental changes. Glob. Biogeochem. Cycles 26, GB2036 (2012).

    Article  Google Scholar 

  83. Vance, C. et al. Aquamarine waters recorded for first time in eastern Bering Sea. Eos 79, 121–126 (1998).

    Article  Google Scholar 

  84. Martin, J. et al. Prevalence, structure and properties of subsurface chlorophyll maxima in Canadian Arctic waters. Mar. Ecol. Prog. Ser. 412, 69–84 (2010).

    Article  Google Scholar 

  85. Le Clainche, Y. et al. Modeling analysis of the effect of iron enrichment on DMS dynamics in the NE Pacific (SERIES experiment). J. Geophys. Res. 111, C01011 (2006).

    Article  Google Scholar 

  86. Archer, S. D. et al. A. Contrasting responses of DMS and DMSP to ocean acidification in Arctic waters. Biogeosci. Discuss. 9, 12803–12843 (2012).

    Article  Google Scholar 

  87. Randall, K. et al. Arctic sea ice: source or sink for nitrous oxide? J. Geophys. Res. 117, C00G15 (2012).

    Article  Google Scholar 

  88. Shooter, D., de Mora, S. J., Grout, A., Wylie, D. J. & Zhiyun, H. The chromatographic analysis of reduced sulfur gases in Antarctic waters following preconcentration onto Tenax. Int. J. Environ. Anal. Chem. 47, 239–249 (1992).

    Article  Google Scholar 

  89. Scarratt, M. G. et al. Production and consumption of dimethylsulfide (DMS) in North Atlantic waters. Mar. Ecol. Prog. Ser. 204, 13–26 (2000).

    Article  Google Scholar 

  90. Bates, S. S. & Cota, G. F. Fluorescence induction and photosynthetic responses or arctic ice algae to sample treatment and salinity. J. Phycol. 22, 421–429 (1986).

    Article  Google Scholar 

  91. Matrai, P. A., Tranvik, L., Leck, C. & Knulst, J. C. Are high Arctic surface microlayers a potential source of aerosol organic precursors? Mar. Chem. 108, 109–122 (2008).

    Article  Google Scholar 

  92. Lee, P. A., Saunders, P. A., de Mora, S. J., Deibel, D. & Levasseur, M. Influence of copepod grazing on concentrations of dissolved dimethylsulfoxide and related sulfur compounds in the North Water, northern Baffin Bay. Mar. Ecol. Prog. Ser. 255, 235–248 (2003).

    Article  Google Scholar 

  93. Damm, E., Kiene, R. P., Schwarz, J., Falck, E. & Dieckmann, G. Methane cycling in Arctic shelf water and its relationship with phytoplankton biomass and DMSP. Mar. Chem. 109, 45–59 (2008).

    Article  Google Scholar 

  94. Vila-Costa, M., Simó, R., Alonso-Saez, L. & Pedros-Alio, C. Number and phylogenetic affiliation of bacteria assimilating dimethylsulfoniopropionate and leucine in the ice-covered coastal Arctic Ocean. J. Mar. Syst. 74, 957–963 (2008).

    Article  Google Scholar 

  95. Jakobssen, M. et al. The International Bathymetric Chart of the Arctic Ocean (IBCAO) Version 3.0. Geophys. Res. Lett. 39, L12609 (2012).

    Google Scholar 

  96. Reisch, C. R., Moran, M. A. & Whitman W. B. Bacterial catabolism of dimethysulfoniopropionate. Front. Microbiol. 2, 1–12 (2012).

    Google Scholar 

  97. Zubkov, M. V. et al. Rapid turnover of dissolved DMS and DMSP by defined bacterioplankton communities in the stratified euphotic zone of the North Sea. Deep-Sea Res. II 49, 3017–3038 (2002).

    Article  Google Scholar 

  98. Sharma, S. et al. Influence of transport and ocean ice extent on biogenic aerosol sulphur in the Arctic atmosphere. J. Geophys. Res. 117, D12209 (2012).

    Google Scholar 

  99. O'Dwyer, J. et al. Methanesulfonic acid in a Svalbard ice core as an indicator of ocean climate. Geophys. Res. Lett. 27, 1159–1162 (2000).

    Article  Google Scholar 

  100. Isaksson, E., Kekonen, T., Moore, J. & Mulvaney, R. The methanesulfonic acid (MSA) record in a Svalbard ice core. Ann. Glaciol. 42, 345–351 (2005).

    Article  Google Scholar 

  101. Heintzenberg, J. & Leck, C. The summer aerosol in the central Arctic 1991–2008: Did it change or not? Atmos. Chem. Phys. 12, 3969–3983 (2010).

    Article  Google Scholar 

  102. Legrand, M. Ice-core records of atmospheric sulphur. Phil. Trans. R. Soc. Lond. B 352, 241–250 (1997).

    Article  Google Scholar 

  103. Abram, N. J., Mulvaney, R., Wolff, E. W. & Mudelsee, M. Ice core records as sea ice proxies: an evaluation from the Weddell Sea region of Antarctica. J. Geophys. Res. 112, D15101 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

I thank M. Lizotte (Québec-Océan, Université Laval, Québec, Canada), M. Gosselin (Institut des sciences de la mer de Rimouski, Université du Québec à Rimouski, Québec, Canada), M. Scarratt and S. Michaud (Maurice Lamontagne Institute, Department of Fisheries and Ocean Canada, Mont-Joli, Quebec, Canada), J. Abbatt (University of Toronto, Toronto, Ontario, Canada) and R. Leaitch (Environment Canada, Downsview, Ontario, Canada) for providing comments on early versions of this manuscript. I thank M. Gosselin (Institut des sciences de la mer de Rimouski, Université du Québec à Rimouski, Québec, Canada), N. Simard and S. Michaud (Institut Maurice-Lamontagne, Mont-Joli, Québec, Canada), S. Sharma (Environment Canada, Downsview, Ontario, Canada), L. Barrie (Department of Geological Sciences, Stockholm University, Stockholm, Sweden) and T.S. Bates (School of Oceanography, University of Washington, Seattle, Washington, USA) for releasing unpublished data from the 1994 Arctic Ocean Section programme (Fig. 6), and M. Gourdal for releasing data from the Arctic-Ice Covered Ecosystem project (Fig. 5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Levasseur.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levasseur, M. Impact of Arctic meltdown on the microbial cycling of sulphur. Nature Geosci 6, 691–700 (2013). https://doi.org/10.1038/ngeo1910

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo1910

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing