Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Contribution of ice sheet and mountain glacier melt to recent sea level rise

Abstract

Changes in global mean sea level primarily reflect the sum of three contributions: water mass changes in the oceans, water density changes, and variations in the volume of the ocean basins. Satellite altimetry data1,2,3,4 suggest that sea level rose by about 2.39±0.48 mm yr−1 between 2005 and 2011. However, previous estimates5,6,7,8,9 of sea level rise from density and ocean mass changes were lower than the altimeter data indicate. Here we show that the gap in the sea level budget disappears when we combine gravity data from the GRACE (Gravity Recovery and Climate Experiment) satellite mission and temperature and salinity observations from the Argo programme collected between 2005 and 2011. The Argo data indicate a density-driven sea level rise of 0.60±0.27 mm yr−1 throughout this period. To estimate ocean mass change from the gravity data, we developed a forward modelling technique that reduces the bleeding of terrestrial signals into the ocean data. Our reassessment suggests an ocean mass contribution of 1.80±0.47 mm yr−1, for a total sea level rise of 2.40±0.54 mm yr−1, in agreement with the altimeter-based estimates. On the basis of the GRACE data, we conclude that most of the change in ocean mass is caused by the melting of polar ice sheets and mountain glaciers. This contribution of ice melt is larger than previous estimates10, but agrees with reports11,12,13 of accelerated ice melt in recent years.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Global mean sea level (GMSL) change.
Figure 2: GRACE non-steric GMSL rates (black line with dots) for the period 2005–2011, as a function of number of iterations in the global forward modelling process.
Figure 3: Global sea level rise budget.

Similar content being viewed by others

References

  1. Fu, L. L., Christensen, E. J., Lefebvre, M. & Menard, Y. TOPEX/Poseidon mission overview. J. Geophys. Res. 99, 24369–24382 (1994).

    Article  Google Scholar 

  2. Merrefield, M. et al. Sea level variations. Bull. Am. Meteorol. Soc. 92, S1–S236 (2011).

    Article  Google Scholar 

  3. Beckley, B. et al. Assessment of the Jason-2 extension to the TOPEX/Poseidon, Jason-1 sea-surface height time series for global mean sea level monitoring. Mar. Geodesy. 33, 447–471 (2010).

    Article  Google Scholar 

  4. Leuliette, E. W. & Scharroo, R. Integrating Jason-2 into a multiple-altimeter climate data record. Mar. Geodesy. 33, 504–517 (2010).

    Article  Google Scholar 

  5. Cazenave, A. & Llovel, W. Contemporary sea level rise. Annu. Rev. Mar. Sci. 2, 145–173 (2010).

    Article  Google Scholar 

  6. Willis, J. K., Chambers, D. P. & Nerem, R. S. Assessing the globally averaged sea level budget on seasonal to interannual timescales. J. Geophys. Res. 113, C06015 (2008).

    Article  Google Scholar 

  7. Leuliette, E. W. & Miller, L. Closing the sea level rise budget with altimetry, Argo, and GRACE. Geophys. Res. Lett. 36, L04608 (2009).

    Article  Google Scholar 

  8. Cazenave, A. et al. Sea level budget over 2003–2008: A reevaluation from GRACE space gravimetry, satellite altimetry and Argo. Glob. Planet. Change 65, 83–88 (2009).

    Article  Google Scholar 

  9. Leuliette, E. W. & Willis, J. K Balancing the sea level budget. Oceanography 24, 122–129 (2011).

    Article  Google Scholar 

  10. IPCC Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) (Cambridge Univ. Press, 2007).

  11. Chen, J. L., Wilson, C. R. & Tapley, B. D Satellite gravity measurements confirm accelerated melting of Greenland ice sheet. Science 313, 1958–1960 (2006).

    Article  Google Scholar 

  12. Chen, J. L., Wilson, C. R., Blankenship, D. D. & Tapley, B. D Accelerated Antarctic ice loss from satellite gravity measurements. Nature Geosci. 2, 859–862 (2009).

    Article  Google Scholar 

  13. Velicogna, I. Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets revealed by GRACE. Geophys. Res. Lett. 36, L19503 (2009).

    Article  Google Scholar 

  14. Church, J. A. & White, N. J. A 20th century acceleration in global sea-level rise. Geophys. Res. Lett. 33, L01602 (2006).

    Article  Google Scholar 

  15. Roemmich, D. & Owens, W. B. The Argo Project: Global ocean observations for understanding and prediction of climate variability. Oceanography 13, 45–50 (2000).

    Article  Google Scholar 

  16. Tapley, B. D., Bettadpur, S., Watkins, M. M. & Reigber, C. The gravity recovery and climate experiment; Mission overview and early results. Geophys. Res. Lett. 31, L09607 (2004).

    Article  Google Scholar 

  17. Cazenave, A. & Chen, J. L. Time-variable gravity from space and present-day mass redistribution in the Earth system. Earth Planet. Sci. Lett. 298, 263–274 (2010).

    Article  Google Scholar 

  18. Peltier, W.R. Closure of the budget of global sea level rise over the GRACE era. Quat. Sci. Rev. 28, 1658–1674 (2009).

    Article  Google Scholar 

  19. Chambers, D. P., Wahr, J., Tamisiea, M. E. & Nerem, R. S. Ocean mass from GRACE and glacial isostatic adjustment. J. Geophys. Res. 115, B11415 (2010).

    Article  Google Scholar 

  20. Tamisiea, M. E. Ongoing glacial isostatic contributions to observations of sea level change. Geophys. J. Int. 186, 1036–1044 (2011).

    Article  Google Scholar 

  21. Paulson, A., Zhong, S. J. & Wahr, J. Inference of mantle viscosity from GRACE and relative sea level data. Geophys. J. Int. 171, 497–508 (2007).

    Article  Google Scholar 

  22. Boening, C. et al. The 2011 La Niña: So strong, the oceans fell. Geophys. Res. Lett. 39, L19602 (2012).

    Google Scholar 

  23. Purkey, S. G. & Johnson, G. C. Warming of global abyssal and deep southern ocean waters between the 1990s and 2000s: Contributions to global heat and sea level rise budgets. J. Clim. 23, 6336–6351 (2010).

    Article  Google Scholar 

  24. Shepherd, A. et al. A reconciled estimate of ice-sheet mass balance. Sciences 338, 1183 (2012).

    Article  Google Scholar 

  25. Vermeersen, L. L. A. & Schotman, H. H. A. Constraints on glacial isostatic adjustment from GOCE and sea level data. Pure Appl. Geophys. 166, 1261–1281 (2009).

    Article  Google Scholar 

  26. Fofonoff, P. & Millard, R. C. Jr Algorithms for computation of fundamental properties of seawater, Unesco Tech. Pap. in Mar. Sci., No. 44, (UNESCO, 1983).

  27. Cheng, M. & Tapley, B. D. Variations in the Earth’s oblateness during the past 28 years. J. Geophys. Res. 109, B09402 (2004).

    Article  Google Scholar 

  28. Geruo, A., Wahr, J. & Zhong, S. Computations of the viscoelastic response of a 3-D compressible Earth to surface loading: An application to Glacial Isostatic Adjustment in Antarctica and Canada. Geophys. J. Int. 192, 557–572 (2013).

    Article  Google Scholar 

  29. Willis, J. K., Lyman, J. M., Johnson, G. C. & Gilson, J. In situ data biases and recent ocean heat content variability. J. Atmos. Oceanic Technol. 26, 846–852 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the NSF OPP Program (ANT-1043750), the NASA GRACE Program (NNX12AJ97G) and the NASA ESI Program (NNX12AM86G).

Author information

Authors and Affiliations

Authors

Contributions

J.L.C. planned analyses, acquired and prepared data, implemented the computation, and wrote the paper. C.R.W. and B.D.T. analysed the data and results.

Corresponding author

Correspondence to J. L. Chen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 5846 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, J., Wilson, C. & Tapley, B. Contribution of ice sheet and mountain glacier melt to recent sea level rise. Nature Geosci 6, 549–552 (2013). https://doi.org/10.1038/ngeo1829

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo1829

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing