Atlantic cooling associated with a marine biotic crisis during the mid-Cretaceous period

Journal name:
Nature Geoscience
Volume:
6,
Pages:
558–561
Year published:
DOI:
doi:10.1038/ngeo1850
Received
Accepted
Published online

Most of the marine biotic crises that occurred during the hot Mesozoic era have been linked to episodes of extreme warmth1, 2. Others, however, may have occurred during cooler intervals that interrupted Cretaceous greenhouse warmth3, 4, 5. There are some indications of cooling in the late Aptian6, 7, 8 (116–114Myr ago), but it has not been definitively linked to biotic crisis. Here we assess the timing and magnitude of late Aptian cooling and its association with biotic crises using a suite of geochemical and micropalaeontological assessments from a marine sediment core from the North Atlantic Ocean as well as global biogeochemical modelling. Sea surface temperatures derived from the TEX86 proxy suggest that surface waters cooled by about 5°C during the two million years, coincident with a positive δ13C excursion of approximately 2‰ in carbonates and organic carbon. Surface productivity was enhanced during this period, but the abundance of planktonic foraminifera and nannoconid phytoplankton declined. Our simulations with a biogeochemical model indicate that the δ13C excursion associated with the cooling could be explained by the burial of about 812,000 gigatons of carbon over 2.5 million years. About 50% of the this carbon burial occurred in the Atlantic, Southern and Tethys ocean basins. We conclude that global cooling during greenhouse conditions can cause perturbations to marine ecosystems and biogeochemical cycles at scales comparable to those associated with global warming.

At a glance

Figures

  1. Palaeogeographic setting of late Aptian Deep Sea Drilling Project Site 545, Mazagan Plateau.
    Figure 1: Palaeogeographic setting of late Aptian Deep Sea Drilling Project Site 545, Mazagan Plateau.

    Reconstruction of the early–mid Cretaceous Atlantic Ocean, Southern Ocean and western Tethys region27, 28 (Supplementary Information) illustrating the progressive opening of the equatorial Atlantic gateway and all ocean basins for four time periods of the Cretaceous.

  2. High-resolution geochemical records.
    Figure 2: High-resolution geochemical records.

    ad, Carbonate (a) and organic carbon (b) isotopes, TEX86 SSTs (c) with associated analytical and calibration errors (Supplementary Information), and total organic carbon (TOC) concentration (d). Biostratigraphy and ages for biozones2, 8, 9, 14, LIP volcanism (Supplementary Information), and both carbon and carbonate isotope data29, 30 are compiled from various sources including new data generated for this study. Climate cycles and the late Aptian cold snap, as discussed in the text, are shown alongside two high-temperature events, HTE and OAE1b (refs 7, 29, 30), which are shown as grey bars.

  3. Marine biotic response to late Aptian cooling.
    Figure 3: Marine biotic response to late Aptian cooling.

    a, Carbonate carbon isotopes. b, SST estimates (based on TEX86). c, Percentages of the boreal cold-water taxon Repagulum parvidentatum. d, Percentages of deep-dwelling nannoconids relative to total calcareous nannofossils. e, Nannofossil-based nutrient index17. f, Percentages of planktic foraminifera relative to total foraminifera2.

References

  1. Hallam, A. The Pliensbachian and Tithonian extinction events. Nature 319, 765768 (1986).
  2. Leckie, R. M., Bralower, T. J. & Cashman, R. Oceanic anoxic events and plankton evolution: Biotic response to tectonic forcing during the mid-Cretaceous. Paleoceanography 17, 129 (2002).
  3. Herrle, J. O. & Mutterlose, J. Calcareous nannofossils from the Aptian–Lower Albian of southeast France: Palaeoecological and biostratigraphic implications. Cretac. Res. 24, 122 (2003).
  4. Mutterlose, J., Bornemann, A. & Herrle, J. O. The Aptian–Albian cold snap: Evidence for mid Cretaceous icehouse interludes. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 232, 217225 (2009).
  5. Iba, Y. et al. Belemnite extinction and the origin of modern cephalopods 35 m.y. prior to the Cretaceous–Paleogene event. Geology 39, 483486 (2011).
  6. Forster, A., Schouten, S., Bass, M. & Sinninghe Damsté, J. S. Mid-Cretaceous (Albian-Santonian) sea surface temperature record of the tropical Atlantic Ocean. Geology 35, 919922 (2007).
  7. Wagner, T. et al. Rapid warming and salinity changes of Cretaceous surface waters in the subtropical North Atlantic. Geology 36, 203206 (2008).
  8. Jenkyns, H. C., Schouten-Huibers, L., Schouten, S. & Sinninghe Damsté, J. S. Warm Middle Jurassic–Early Cretaceous high-latitude sea-surface temperatures from the Southern Ocean. Clim. Past 8, 215226 (2012).
  9. Gradstein, F. M., Ogg, J. G. & Smith, A. G. A Geologic Time Scale 2004 (Cambridge Univ. Press, 2004).
  10. Kemper, E. Das Klima der Kreidezeit. Geologisches Jahrbuch A 96, 5185 (1987).
  11. Weissert, H. & Lini, A. in Controversies in Modern Geology (eds Müller, W., McKenzie, J.A. & Weissert, H.) 173191 (Academic, 1991).
  12. Hong, S. K. & Lee, Y. I. Evaluation of atmospheric carbon dioxide concentrations during the Cretaceous. Earth Planet. Sci. Lett. 327–328, 2328 (2012).
  13. Wagner, T. & Pletsch, T. in The Oil and Gas Habitats of the South Atlantic Vol. 153 (eds Cameron, N. R., Bate, R. H. & Clure, V. S.) 241265 (Geol. Soc. Spec. Publ., Geological Society, 1999).
  14. Föllmi, K. B., Godet, A., Bodin, S. & Linder, P. Interactions between environmental change and shallow water carbonate buildup along the northern Tethyan margin and their impact on the Early Cretaceous carbon isotope record. Paleoceanography 21, PA4211 (2006).
  15. Kim, J-K. et al. New indices and calibrations derived from the distribution of crenarchaeal isoprenoid tetraether lipids: Implications for past sea surface temperature reconstructions. Geochim. Cosmochim. Acta 74, 46394654 (2010).
  16. Flögel, S. et al. Simulating the biogeochemical effects of volcanic CO2 degassing on the oxygen-state of the deep ocean during the Cenomanian/Turonian Anoxic Event (OAE2). Earth Planet. Sci. Lett. 305, 371384 (2011).
  17. Herrle, J. O., Pross, J., Friedrich, O., Kößler, P. & Hemleben, C. Forcing mechanisms for mid-Cretaceous black shale formation: Evidence from the Upper Aptian and Lower Albian of the Vocontian Basin (SE France). Palaeogeogr. Palaeoclim. Palaeoecol. 190, 399426 (2003).
  18. Huber, B. T. & Leckie, M. Planktonic foraminiferal species turnover across deep-sea Aptian/Albian boundary sections. J. Foraminiferal Res. 41, 5395 (2011).
  19. Erba, E. Fossils and superplumes; the early Aptian ‘nannoconid crisis’. Paleoceanography 9, 483501 (1994).
  20. Harwood, D. M., Nikolaev, V. A. & Winter, D. M. in Pond Scum to Carbon Sink: Geological and Environmental Applications of the Diatoms Vol. 13 (ed. Starratt, S.) 3359 (Paleontol. Soc. Papers, 2007).
  21. Weissert, H., Lini, A., Föllmi, K. B. & Kuhn, O. Correlation of Early Cretaceous carbon isotope stratigraphy and platform drowning events: A possible link? Palaeogeogr. Palaeoclimat. Palaeoecol. 137, 189203 (1998).
  22. Tucholke, B. E. & Vogt, R. R. in Initial Reports of the Deep Sea Drilling Program Vol. 43 (eds Tucholke, B. E. & Vogt, P. R.) 791825 (US Gov. Printing Office, 1979).
  23. Arthur, M. A. & Natland, J. H. in Deep Drilling Results in the Atlantic Ocean, Continental Margins and Paleoenvironment (eds Talwani, M., Hay, W. & Ryan, W. B. F.) 375401 (Maurice Ewing Series, Vol. 3, AGU, 1979).
  24. Stein, R., Rullkötter, J. & Welte, D. H. Accumulation of organic-carbon-rich sediments in the Late Jurassic and Cretaceous Atlantic Ocean—A synthesis. Chem. Geol. 56, 132 (1986).
  25. Poulsen, C. J., Barron, E. J., Arthur, M. A. & Peterson, W. H. Response of the Mid-Cretaceous global oceanic circulation to tectonic and CO2 forcings. Paleoceanography 16, 576592 (2001).
  26. Peters, S. E., Kelly, D. C. & Fraass, A. J. Oceanic controls on the diversity and extinction of planktic foraminifera. Nature 493, 398401 (2013).
  27. Boyden, J. A. et al. in Geoinformatics: Cyberinfrastructure for the Solid Earth Sciences (eds Keller, G. R. & Baru, C.) 95114 (Cambridge Univ. Press, 2011).
  28. Williams, S., Müller, R. D., Landgrebe, T. C. W. & Whittaker, J. M. An open-source software environment for visualizing and refining plate tectonic reconstructions using high resolution geological and geophysical data sets. GSA Today 22, 49 (2012).
  29. Herrle, J. O., Koessler, P., Friedrich, O., Erlenkeuser, H. & Hemleben, C. High resolution carbon isotope records of the Aptian to Lower Albian from SE France and the Mazagan plateau (DSDP Site 545); a stratigraphic tool for paleoceanographic and paleobiologic reconstruction. Earth Planet. Sci. Lett. 218, 149161 (2004).
  30. Wagner, T., Wallmann, K., Stüsser, I., Herrle, J. O. & Hofmann, P. Consequences of moderate 25,000 yr lasting emission of light CO2 into the mid-Cretaceous ocean. Earth Planet. Sci. Lett. 259, 200211 (2007).

Download references

Author information

Affiliations

  1. Department of Geology and Mineralogy, University of Cologne, 50674 Cologne, Germany

    • A. McAnena,
    • P. Hofmann &
    • J. Rethemeyer
  2. GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstr. 1-3, 24148 Kiel, Germany

    • S. Flögel &
    • K. Wallmann
  3. Institute of Geosciences, Goethe-University Frankfurt, D-60438 Frankfurt am Main, Germany

    • J. O. Herrle,
    • A. Griesand &
    • J. Pross
  4. Biodiversity and Climate Research Centre (BIK-F), D-60325 Frankfurt am Main, Germany

    • J. O. Herrle,
    • A. Griesand &
    • J. Pross
  5. School of Civil Engineering and Geosciences, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK

    • H. M. Talbot &
    • T. Wagner
  6. Present address: Institute of Marine and Coastal Science, Rutgers The State University of New Jersey, New Brunswick, New Jersey 08901, USA

    • A. McAnena

Contributions

S.F., J.O.H., P.H., J.P., K.W. and T.W. designed the study; S.F., A.G, A.M., J.R., H.M.T. and K.W. performed analyses and contributed to the discussion; S.F., P.H., J.O.H., A.M. and T.W. wrote the paper, with overall coordination by T.W.

Competing financial interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to:

Author details

Supplementary information

PDF files

  1. Supplementary Information (1,254 KB)

    Supplementary Information

Additional data