Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The contribution of glacial erosion to shaping the hidden landscape of East Antarctica

Abstract

The subglacial topography in East Antarctica has been revealed by airborne radar surveys1,2,3. However, how this ice-hidden landscape has evolved over time is less well known4,5,6,7,8,9,10,11,12. Low pre-glacial erosion rates since the Permian period have been reported12, challenging arguments for enhanced erosion during the Cretaceous period4,6. Here we present a record of long-term East Antarctic erosion by applying multiple dating techniques to over 1,400 detrital mineral grains from onshore moraines and offshore sediments of Cretaceous to Quaternary age in the region of Lambert Glacier and Prydz Bay. Ages from pre-glacial sediments support overall low erosion rates before the expansion of the ice sheet, apart from a discrete interval of magmatic heating about 115 Myr ago that is inconsistent with widespread Cretaceous erosion. We find a shift towards younger and broader age distributions since 34 Myr ago that necessitates spatially localized erosion of over 2 km in the Lambert Glacier catchment over this time. We infer that the trough containing Lambert Glacier was incised almost entirely by selective glacial erosion following initial expansion of the East Antarctic ice sheet. This implies that the early ice sheet was dynamic with ice flow concentrated along fixed ice streams.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Subglacial topographic and location map.
Figure 2: Offshore detrital geochronologic and thermochronologic data summary.
Figure 3: Thermal modelling results.

Similar content being viewed by others

References

  1. Bo, S. et al. The Gamburtsev mountains and the origin and early evolution of the Antarctic Ice Sheet. Nature 459, 690–693 (2009).

    Article  Google Scholar 

  2. Ferraccioli, F. et al. East Antarctic rifting triggers uplift of the Gamburtsev Mountains. Nature 479, 388–392 (2011).

    Article  Google Scholar 

  3. Young, D. A. et al. A dynamic early East Antarctic Ice Sheet suggested by ice-covered fjord landscapes. Nature 474, 72–75 (2011).

    Article  Google Scholar 

  4. Arne, D. C. Phanerozoic exhumation history of Northern Prince-Charles-Mountains (East Antarctica). Antarct. Sci. 6, 69–84 (1994).

    Article  Google Scholar 

  5. Hambrey, M. J. & McKelvey, B. Major Neogene fluctuations of the East Antarctic ice sheet: Stratigraphic evidence from the Lambert Glacier region. Geology 28, 887–890 (2000).

    Article  Google Scholar 

  6. Lisker, F., Brown, R. & Fabel, D. Denudational and thermal history along a transect across the Lambert Graben, northern Prince Charles Mountains, Antarctica, derived from apatite fission track thermochronology. Tectonics 22, 1055 (2003).

    Article  Google Scholar 

  7. Hambrey, M. J., Glasser, N. F., McKelvey, B. C., Sugden, D. E. & Fink, D. Cenozoic landscape evolution of an East Antarctic oasis (Radok Lake area, northern Prince Charles Mountains), and its implications for the glacial and climatic history of Antarctica. Quat. Sci. Rev. 26, 598–626 (2007).

    Article  Google Scholar 

  8. Taylor, J. et al. Topographic controls on post-Oligocene changes in ice-sheet dynamics, Prydz Bay region, East Antarctica. Geology 32, 197–200 (2004).

    Article  Google Scholar 

  9. Jamieson, S. S. R., Sugden, D. E. & Hulton, N. R. J. The evolution of the subglacial landscape of Antarctica. Earth Planet. Sci. Lett. 293, 1–27 (2010).

    Article  Google Scholar 

  10. Wilson, D. S. et al. Antarctic topography at the Eocene–Oligocene boundary. Palaeogeogr. Palaeoclimatol. Palaeoecol. 335-336, 24–34 (2012).

    Article  Google Scholar 

  11. van de Flierdt, T., Hemming, S. R., Goldstein, S. L., Gehrels, G. E. & Cox, S. E. Evidence against a young volcanic origin of the Gamburtsev Subglacial Mountains, Antarctica. Geophys. Res. Lett. 35, L21303 (2008).

    Article  Google Scholar 

  12. Cox, S. E., Thomson, S. N., Reiners, P. W., Hemming, S. R. & van de Flierdt, T. Extremely low long-term erosion rates around the Gamburtsev Mountains in interior East Antarctica. Geophys. Res. Lett. 37, L22307 (2010).

    Article  Google Scholar 

  13. DeConto, R. M. & Pollard, D. Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2 . Nature 421, 245–249 (2003).

    Article  Google Scholar 

  14. Siegert, M. J. Antarctic subglacial topography and ice-sheet evolution. Earth Surf. Process. Landf. 33, 646–660 (2008).

    Article  Google Scholar 

  15. Harrowfield, M., Holdgate, G. R., Wilson, C. J. L. & McLoughlin, S. Tectonic significance of the Lambert Graben, East Antarctica: Reconstructing the Gondwanan rift. Geology 33, 197–200 (2005).

    Article  Google Scholar 

  16. Jamieson, S. S. R., Hulton, N. R. J., Sugden, D. E., Payne, A. J. & Taylor, J. Cenozoic landscape evolution of the Lambert basin, East Antarctica: The relative role of rivers and ice sheets. Glob. Planet. Change 45, 35–49 (2005).

    Article  Google Scholar 

  17. Arne, D. C., Kelly, P. R., Brown, R. W. & Gleadow, A. J. W. in Gondwana 8: Assembly, Evolution and Dispersal (eds Findlay, R. H., Banks, H. R., Veevers, J. J. & Unrug, R.) 605–611 (1993).

    Google Scholar 

  18. Lisker, F., Wilson, C. J. L. & Gibson, H. J. Thermal history of the Vestfold Hills (East Antarctica) between Lambert rifting and Gondwana break-up, evidence from apatite fission track data. Antarct. Sci. 19, 97–106 (2007).

    Article  Google Scholar 

  19. McKelvey, B. C. et al. The Pagodroma group—a Cenozoic record of the East Antarctic ice sheet in the northern Prince Charles Mountains. Antarct. Sci. 13, 455–468 (2001).

    Article  Google Scholar 

  20. Cherniak, D. J., Lanford, W. A. & Ryerson, F. J. Lead diffusion in apatite and zircon using ion-implantation and Rutherford backscattering techniques. Geochim. Cosmochim. Acta 55, 1663–1673 (1991).

    Article  Google Scholar 

  21. Reiners, P. W. & Brandon, M. T. Using thermochronology to understand orogenic erosion. Annu. Rev. Earth Planet. Sci. 34, 419–466 (2006).

    Article  Google Scholar 

  22. Thomson, S. N., Gehrels, G. E., Ruiz, J. & Buchwaldt, R. Routine low-damage apatite U–Pb dating using laser ablation-multicollector-ICPMS. Geochem. Geophys. Geosyst. 13, Q0AA21 (2012).

    Article  Google Scholar 

  23. Cooper, A. K. & O’Brien, P. E. in Proc. Ocean Drilling Program, Scientific Results Vol. 188 (eds Cooper, A. K., O’Brien, P. E. & Richter, C.) 1–42 (2004).

    Book  Google Scholar 

  24. Tochilin, C. J. et al. Erosional history of the Prydz Bay sector of East Antarctica from detrital apatite and zircon geo- and thermochronology multidating. Geochem. Geophys. Geosyst. 13, Q11015 (2012).

    Article  Google Scholar 

  25. Coffin, M. F. et al. Kerguelen hotspot magma output since 130 Ma. J. Petrol. 43, 1121–1139 (2002).

    Article  Google Scholar 

  26. Phillips, G., Kelsey, D. E., Corvino, A. F. & Dutch, R. A. Continental reworking during overprinting orogenic events, Southern Prince Charles Mountains, East Antarctica. J. Petrol. 50, 2017–2041 (2009).

    Article  Google Scholar 

  27. Roy, M., van de Flierdt, T. V., Hemming, S. R. & Goldstein, S. L. Ar-40/Ar-39 ages of hornblende grains and bulk Sm/Nd isotopes of circum-Antarctic glacio-marine sediments: Implications for sediment provenance in the Southern Ocean. Chem. Geol. 244, 507–519 (2007).

    Article  Google Scholar 

  28. Garver, J. I., Brandon, M. T., Roden-Rice, M. & Kamp, P. J. J. in Exhumation Processes: Normal Faulting, Ductile Flow and Erosion Vol. 154 (eds Ring, U., Brandon, M. T., Lister, G. S. & Willett, S. D.) 283–304 (1999).

    Google Scholar 

  29. Wellman, P. & Tingey, R. J. Glaciation, erosion and uplift over part of East Antarctica. Nature 291, 142–144 (1981).

    Article  Google Scholar 

  30. Fretwell, P. et al. Bedmap2: Improved ice bed, surface and thickness datasets for Antarctica. Cryosphere Discuss. 6, 4305–4361 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by NSF Polar Programs award ANT 0838722. We thank D. Harwood for supplying samples from the Pagodroma Group, E. Pierce and T. Williams for help with data compilation, L. Hill and P. Gou for help with sample preparation, U. Chowdhury and S. Nicolescu for (U–Th)/He analytical assistance, and M. Pecha and the Arizona LaserChron Center staff for support with U–Pb analysis.

Author information

Authors and Affiliations

Authors

Contributions

Writing and data analysis were carried out by S.N.T. Project planning and data interpretation were carried out by S.N.T., P.W.R., S.R.H and G.E.G.

Corresponding author

Correspondence to Stuart N. Thomson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 8257 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomson, S., Reiners, P., Hemming, S. et al. The contribution of glacial erosion to shaping the hidden landscape of East Antarctica. Nature Geosci 6, 203–207 (2013). https://doi.org/10.1038/ngeo1722

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo1722

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing