The contribution of glacial erosion to shaping the hidden landscape of East Antarctica

Journal name:
Nature Geoscience
Year published:
Published online

The subglacial topography in East Antarctica has been revealed by airborne radar surveys1, 2, 3. However, how this ice-hidden landscape has evolved over time is less well known4, 5, 6, 7, 8, 9, 10, 11, 12. Low pre-glacial erosion rates since the Permian period have been reported12, challenging arguments for enhanced erosion during the Cretaceous period4, 6. Here we present a record of long-term East Antarctic erosion by applying multiple dating techniques to over 1,400 detrital mineral grains from onshore moraines and offshore sediments of Cretaceous to Quaternary age in the region of Lambert Glacier and Prydz Bay. Ages from pre-glacial sediments support overall low erosion rates before the expansion of the ice sheet, apart from a discrete interval of magmatic heating about 115Myr ago that is inconsistent with widespread Cretaceous erosion. We find a shift towards younger and broader age distributions since ~ 34Myr ago that necessitates spatially localized erosion of over 2km in the Lambert Glacier catchment over this time. We infer that the trough containing Lambert Glacier was incised almost entirely by selective glacial erosion following initial expansion of the East Antarctic ice sheet. This implies that the early ice sheet was dynamic with ice flow concentrated along fixed ice streams.

At a glance


  1. Subglacial topographic and location map.
    Figure 1: Subglacial topographic and location map.

    Subglacial topography from the Bedmap2 data set30. Offshore core locations are highlighted in white text. Coloured circles represent different ages and locations of published AFT data4, 6, 17, 18. White numbers are apatite U–Pb ages (Supplementary Table S1 and Fig. S1, 1σ uncertainty) and black numbers are AFT ages (1σ uncertainty), both from moraines of the Pagodroma Group (Supplementary Table S2).

  2. Offshore detrital geochronologic and thermochronologic data summary.
    Figure 2: Offshore detrital geochronologic and thermochronologic data summary.

    Lithostratigraphy from ODP Site 1166 (ref. 23). Age data shown in the form of age histograms and probability density functions (red lines) where n represents the number of analyses. Fission-track plots represent combination of data from separate core interval depths grouped by stratigraphic age (Supplementary Tables S3–S6).

  3. Thermal modelling results.
    Figure 3: Thermal modelling results.

    AFT and AHe ages shown as blue and green circles respectively, with 1σ error bars. a, Time–temperature histories for samples resident at different depths (and hence temperatures) 34Myrago are used to predict age–depth curves. b, AFT/AHe double-dated grain age pairs from Quaternary sample JPC34 70 matched to AFT and AHe age–depth profiles 34Myrago predicted from time–temperature histories shown in a. Open circles represent youngest grains not double-dated. Position of age pairs approximates the depth of each grain 34Myrago (see Supplementary Note S1). c, The same as in b, but with 50°C Early Cretaceous (~ 115Myrago) reheating.


  1. Bo, S. et al. The Gamburtsev mountains and the origin and early evolution of the Antarctic Ice Sheet. Nature 459, 690693 (2009).
  2. Ferraccioli, F. et al. East Antarctic rifting triggers uplift of the Gamburtsev Mountains. Nature 479, 388392 (2011).
  3. Young, D. A. et al. A dynamic early East Antarctic Ice Sheet suggested by ice-covered fjord landscapes. Nature 474, 7275 (2011).
  4. Arne, D. C. Phanerozoic exhumation history of Northern Prince-Charles-Mountains (East Antarctica). Antarct. Sci. 6, 6984 (1994).
  5. Hambrey, M. J. & McKelvey, B. Major Neogene fluctuations of the East Antarctic ice sheet: Stratigraphic evidence from the Lambert Glacier region. Geology 28, 887890 (2000).
  6. Lisker, F., Brown, R. & Fabel, D. Denudational and thermal history along a transect across the Lambert Graben, northern Prince Charles Mountains, Antarctica, derived from apatite fission track thermochronology. Tectonics 22, 1055 (2003).
  7. Hambrey, M. J., Glasser, N. F., McKelvey, B. C., Sugden, D. E. & Fink, D. Cenozoic landscape evolution of an East Antarctic oasis (Radok Lake area, northern Prince Charles Mountains), and its implications for the glacial and climatic history of Antarctica. Quat. Sci. Rev. 26, 598626 (2007).
  8. Taylor, J. et al. Topographic controls on post-Oligocene changes in ice-sheet dynamics, Prydz Bay region, East Antarctica. Geology 32, 197200 (2004).
  9. Jamieson, S. S. R., Sugden, D. E. & Hulton, N. R. J. The evolution of the subglacial landscape of Antarctica. Earth Planet. Sci. Lett. 293, 127 (2010).
  10. Wilson, D. S. et al. Antarctic topography at the Eocene–Oligocene boundary. Palaeogeogr. Palaeoclimatol. Palaeoecol. 335-336, 2434 (2012).
  11. van de Flierdt, T., Hemming, S. R., Goldstein, S. L., Gehrels, G. E. & Cox, S. E. Evidence against a young volcanic origin of the Gamburtsev Subglacial Mountains, Antarctica. Geophys. Res. Lett. 35, L21303 (2008).
  12. Cox, S. E., Thomson, S. N., Reiners, P. W., Hemming, S. R. & van de Flierdt, T. Extremely low long-term erosion rates around the Gamburtsev Mountains in interior East Antarctica. Geophys. Res. Lett. 37, L22307 (2010).
  13. DeConto, R. M. & Pollard, D. Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2. Nature 421, 245249 (2003).
  14. Siegert, M. J. Antarctic subglacial topography and ice-sheet evolution. Earth Surf. Process. Landf. 33, 646660 (2008).
  15. Harrowfield, M., Holdgate, G. R., Wilson, C. J. L. & McLoughlin, S. Tectonic significance of the Lambert Graben, East Antarctica: Reconstructing the Gondwanan rift. Geology 33, 197200 (2005).
  16. Jamieson, S. S. R., Hulton, N. R. J., Sugden, D. E., Payne, A. J. & Taylor, J. Cenozoic landscape evolution of the Lambert basin, East Antarctica: The relative role of rivers and ice sheets. Glob. Planet. Change 45, 3549 (2005).
  17. Arne, D. C., Kelly, P. R., Brown, R. W. & Gleadow, A. J. W. in Gondwana 8: Assembly, Evolution and Dispersal (eds Findlay, R. H., Banks, H. R., Veevers, J. J. & Unrug, R.) 605611 (1993).
  18. Lisker, F., Wilson, C. J. L. & Gibson, H. J. Thermal history of the Vestfold Hills (East Antarctica) between Lambert rifting and Gondwana break-up, evidence from apatite fission track data. Antarct. Sci. 19, 97106 (2007).
  19. McKelvey, B. C. et al. The Pagodroma group—a Cenozoic record of the East Antarctic ice sheet in the northern Prince Charles Mountains. Antarct. Sci. 13, 455468 (2001).
  20. Cherniak, D. J., Lanford, W. A. & Ryerson, F. J. Lead diffusion in apatite and zircon using ion-implantation and Rutherford backscattering techniques. Geochim. Cosmochim. Acta 55, 16631673 (1991).
  21. Reiners, P. W. & Brandon, M. T. Using thermochronology to understand orogenic erosion. Annu. Rev. Earth Planet. Sci. 34, 419466 (2006).
  22. Thomson, S. N., Gehrels, G. E., Ruiz, J. & Buchwaldt, R. Routine low-damage apatite U–Pb dating using laser ablation-multicollector-ICPMS. Geochem. Geophys. Geosyst. 13, Q0AA21 (2012).
  23. Cooper, A. K. & O’Brien, P. E. in Proc. Ocean Drilling Program, Scientific Results Vol. 188 (eds Cooper, A. K., O’Brien, P. E. & Richter, C.) 142 (2004).
  24. Tochilin, C. J. et al. Erosional history of the Prydz Bay sector of East Antarctica from detrital apatite and zircon geo- and thermochronology multidating. Geochem. Geophys. Geosyst. 13, Q11015 (2012).
  25. Coffin, M. F. et al. Kerguelen hotspot magma output since 130Ma. J. Petrol. 43, 11211139 (2002).
  26. Phillips, G., Kelsey, D. E., Corvino, A. F. & Dutch, R. A. Continental reworking during overprinting orogenic events, Southern Prince Charles Mountains, East Antarctica. J. Petrol. 50, 20172041 (2009).
  27. Roy, M., van de Flierdt, T. V., Hemming, S. R. & Goldstein, S. L. Ar-40/Ar-39 ages of hornblende grains and bulk Sm/Nd isotopes of circum-Antarctic glacio-marine sediments: Implications for sediment provenance in the Southern Ocean. Chem. Geol. 244, 507519 (2007).
  28. Garver, J. I., Brandon, M. T., Roden-Rice, M. & Kamp, P. J. J. in Exhumation Processes: Normal Faulting, Ductile Flow and Erosion Vol. 154 (eds Ring, U., Brandon, M. T., Lister, G. S. & Willett, S. D.) 283304 (1999).
  29. Wellman, P. & Tingey, R. J. Glaciation, erosion and uplift over part of East Antarctica. Nature 291, 142144 (1981).
  30. Fretwell, P. et al. Bedmap2: Improved ice bed, surface and thickness datasets for Antarctica. Cryosphere Discuss. 6, 43054361 (2012).

Download references

Author information


  1. Department of Geosciences, University of Arizona, Tucson, Arizona 85271, USA

    • Stuart N. Thomson,
    • Peter W. Reiners &
    • George E. Gehrels
  2. Department of Earth and Environmental Sciences and Lamont-Doherty Earth Observatory of Columbia University, Palisades, New York 10964, USA

    • Sidney R. Hemming


Writing and data analysis were carried out by S.N.T. Project planning and data interpretation were carried out by S.N.T., P.W.R., S.R.H and G.E.G.

Competing financial interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to:

Author details

Supplementary information

PDF files

  1. Supplementary Information (8.2 mB)

    Supplementary Information

Additional data