Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Triggers for the formation of porphyry ore deposits in magmatic arcs

Subjects

Abstract

Porphyry ore deposits are the source of much of the copper, molybdenum, gold and silver used by humans. Porphyry ore typically forms in magmatic arcs above subduction zones. However, generation of the largest deposits is often restricted to specific arc segments and limited periods of time. Here, I outline a hierarchy of four key triggers that may be involved in the formation of large porphyry deposits. The first process is characterized by a cyclical enrichment of magmas with metals and water in the deep crust. Second, saturation of the magma with sulphide facilitates the concentration of metals into smaller volumes of material from which they can later be released. The third process is an efficient transfer of metals into hydrothermal fluids that are exsolved from the magmas. Finally, localized processes trigger the precipitation of ore minerals in the crust. Although some or all of these processes must act in concert to generate large ore deposits, I argue that sulphide saturation of the magma is the most important step and that this can explain the temporal and spatial distribution of ores. Consequently, the fingerprint of sulphide saturation in igneous rocks could be used to identify those parts of magmatic arcs that are particularly predisposed to ore formation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Suprasubduction zone setting for the formation of porphyry ore deposits.

Similar content being viewed by others

References

  1. Seward, T. M. & Barnes, H. L. in Geochemistry of Hydrothermal Ore Deposits (ed. Barnes, H. L.) 435–486 (Wiley, 1997).

    Google Scholar 

  2. Yardley, B. W. D. Metal concentrations in crustal fluids and their relationship to ore formation. Econ. Geol. 100, 613–632 (2005).

    Article  Google Scholar 

  3. Stoffell, B., Appold, M. S., Wilkinson, J. J., McLean, N. A. & Jeffries, T. E. Geochemistry and evolution of MVT mineralising brines from the tri-state and northern Arkansas districts determined by LA-ICP-MS microanalysis of fluid inclusions. Econ. Geol. 103, 1411–1435 (2008).

    Article  Google Scholar 

  4. Wilkinson, J. J., Stoffell, B., Wilkinson, C. C., Jeffries, T. E. & Appold, M. S. Anomalously metal-rich fluids form hydrothermal ore deposits. Science 323, 764–767 (2009).

    Article  Google Scholar 

  5. Richard, A. et al. Giant uranium deposits formed from exceptionally uranium-rich acidic brines. Nature Geosci. 5, 142–146 (2012).

    Article  Google Scholar 

  6. Pudack, C., Halter, W. E., Heinrich, C. A. & Pettke, T. Evolution of magmatic vapor to gold-rich epithermal liquid: The porphyry to epithermal transition at Nevados de Famatina, northwest Argentina. Econ. Geol. 104, 449–477.

  7. Wilkinson, J. J., Simmons, S. F. & Stoffell, B. How metalliferous brines line Mexican epithermal veins with silver. Sci. Rep. 3, 2057 (2013).

    Article  Google Scholar 

  8. Heinrich, C. A., Günter, D., Audétat, A., Ulrich, T. & Frischknecht, R. Metal fractionation between magmatic brine and vapor determined by microanalysis of fluid inclusions. Geology 27, 755–758 (1999).

    Article  Google Scholar 

  9. Heinrich, C. A. How fast does gold trickle out of volcanoes? Science 314, 263–264 (2006).

    Article  Google Scholar 

  10. Audétat, A., Pettke, T., Heinrich, C. A. & Bodnar, R. J. The composition of magmatic-hydrothermal fluids in barren and mineralized intrusions. Econ. Geol. 103, 877–908 (2008).

    Article  Google Scholar 

  11. Hedenquist, J. W. & Lowenstern, J. B. The role of magmas in the formation of hydrothermal ore deposits. Nature 370, 519–527 (1994).

    Article  Google Scholar 

  12. John, D. A. et al. in Mineral Deposit Models for Resource Assessment Ch. B (US Geological Survey Scientific Investigations Report 2010-5070-B, 2010).

    Google Scholar 

  13. Sillitoe, R. H. Porphyry copper systems. Econ. Geol. 105, 3–41 (2010).

    Article  Google Scholar 

  14. Richards, J. P. Magmatic to hydrothermal metal fluxes in convergent and collided margins. Ore Geol. Rev. 40, 1–26 (2011).

    Article  Google Scholar 

  15. Cooke, D. R., Hollings, P., Wilkinson, J. J. & Tosdal, R. M. in Mineral Deposits (ed. Scott, S. D.) Ch. 11 (Treatise on Geochemistry 2nd edn, Elsevier, 2013).

    Google Scholar 

  16. Chambefort, I., Dilles, J. H. & Kent, A. J. R. Anhydrite-bearing andesite and dacite as a source for sulfur in magmatic-hydrothermal mineral deposits. Geology 36, 719–722 (2008).

    Article  Google Scholar 

  17. Cooke, D. R., Hollings, P. & Walshe, J. L. Giant porphyry deposits: Characteristics, distribution, and tectonic controls. Econ. Geol. 100, 801–818 (2005).

    Article  Google Scholar 

  18. Winter, J. D. An Introduction to Igneous and Metamorphic Petrology (Prentice Hall, 2001).

    Google Scholar 

  19. Burnham, C. W. in Geochemistry of Hydrothermal Ore Deposits 3rd edn (ed. Barnes, H. L.) 71–136 (Wiley, 1979).

    Google Scholar 

  20. Shinohara, H., Kazahaya, K. & Lowenstern, J. B. Volatile transport in a convecting magma column: Implications for porphyry Mo mineralization. Geology 23, 1091–1094 (1995).

    Article  Google Scholar 

  21. Proffett, J. M. High Cu grades in porphyry Cu deposits and their relationship to emplacement depth of magmatic sources. Geology 37, 675–678 (2009).

    Article  Google Scholar 

  22. Dilles, J. H. The petrology of the Yerington batholith, Nevada: Evidence for the evolution of porphyry copper ore fluids. Econ. Geol. 82, 1750–1789 (1987).

    Article  Google Scholar 

  23. Candela, P. A. in Ore Deposition Associated with Magmas (eds Whitney, J. A. & Naldrett, A. J.) 223–233 (Reviews in Economic Geology 4, Society of Economic Geologists, 1989).

    Google Scholar 

  24. Fournier, R. O. Hydrothermal processes related to movement of fluid from plastic to brittle rock in the magmatic-epithermal environment. Econ. Geol. 94, 1193–1211 (1999).

    Article  Google Scholar 

  25. Sillitoe, R. H. in Porphyry and Hydrothermal Copper and Gold Deposits - A Global Perspective (ed. Porter, T. M.) 21–34 (PGC, 1998).

    Google Scholar 

  26. Richards, J. P. in Super Porphyry Copper and Gold Deposits - A Global Perspective Vol. 1 (ed. Porter, T. M.) 7–25 (PGC, 2005).

    Google Scholar 

  27. Best, M. G. & Christiansen, E. H. Igneous Petrology (Blackwell Science, 2001).

    Google Scholar 

  28. Manning, C. E. The chemistry of subduction-zone fluids. Earth Planet. Sci. Lett. 223, 1–16 (2004).

    Article  Google Scholar 

  29. Leeman, W. P. in Subduction: Top to Bottom (eds Bebout, G. E., Scholl, D. W., Kirby, S. H. & Platt, J. P.) 269–276 (American Geophysical Union, 1996).

    Google Scholar 

  30. Dreyer, B. M., Morris, J. D. & Gill, B. Incorporation of subducted slab-derived sediment and fluid in arc magmas: B-Be-10Be-ɛNd systematics of the Kurile convergent margin, Russia. J. Petrol. 51, 1761–1782 (2010).

    Article  Google Scholar 

  31. Bureau, H. & Keppler, H. Complete miscibility between silicate melts and hydrous fluids in the upper mantle: Experimental evidence and geochemical implications. Earth Planet. Sci. Lett. 165, 187–196 (1999).

    Article  Google Scholar 

  32. Kessell, R., Schmidt, M. W., Ulmer, P. & Pettke, T. Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120–180 km depth. Nature 437, 724–727 (2005).

    Article  Google Scholar 

  33. Navon, O., Hutcheon, I. D., Rossman, G. R. & Wasserburg, G. J. Mantle-derived fluids in diamond micro-inclusions. Nature 335, 784–789 (1988).

    Article  Google Scholar 

  34. Schiano, P. & Clocchiatti, R. Worldwide occurrence of silica-rich melts in sub-continental and sub-oceanic mantle minerals. Nature 368, 621–624 (1994).

    Article  Google Scholar 

  35. Wulff-Pedersen, E., Neumann, E-R. & Jensen, B. B. The upper mantle under La Palma, Canary Islands: Formation of Si-K-Na-rich melt and its importance as a metasomatic agent. Contrib. Mineral. Petrol. 125, 113–139 (1996).

    Article  Google Scholar 

  36. Mungall, J. E. Roasting the mantle: Slab melting and the genesis of major Au and Au-rich Cu deposits. Geology 30, 915–918 (2002).

    Article  Google Scholar 

  37. Alt, J. C., Shanks, W. C. & Jackson, M. C. Cycling of sulfur in subduction zones: The geochemistry of sulfur in the Mariana Island Arc and back-arc trough. Earth Planet. Sci. Lett. 119, 477–494 (1993).

    Article  Google Scholar 

  38. Gill, J. B. Orogenic Andesites and Plate Tectonics (Springer, 1981).

    Book  Google Scholar 

  39. McInnes, B. I. A., McBride, J. S., Evans, N. J., Lambert, D. D. & Andrew, A. S. Osmium isotope constraints on ore metal recycling in subduction zones. Science 286, 512–516 (1999).

    Article  Google Scholar 

  40. Barnes, S-J. & Maier, W. D. in Dynamic Processes in Magmatic Ore Deposits and their Application in Mineral Exploration (eds Keays, R. R., Lesher, C. M., Lightfoot, P. C. & Farrow, C. E. G.) 69–106 (Short Course 13, Geological Association of Canada, 1999).

    Google Scholar 

  41. Jugo, P. J. Sulfur content at sulfide saturation in oxidized magmas. Geology 37, 415–418 (2009).

    Article  Google Scholar 

  42. Lee, C-T. A. et al. Copper systematics in arc magmas and implications for crust-mantle differentiation. Science 336, 64–68 (2012).

    Article  Google Scholar 

  43. DePaolo, D. J. Trace-element and isotopic effects of combined wallrock assimilation and fractional crystallisation. Earth Planet. Sci. Lett. 53, 189–202 (1981).

    Article  Google Scholar 

  44. Hildreth, W. & Moorbath, S. Crustal contribution to arc magmatism in the Andes of central Chile. Contrib. Mineral. Petrol. 98, 455–489 (1988).

    Article  Google Scholar 

  45. Annen, C., Blundy, J. & Sparks, R. S. J. The genesis of intermediate and silicic magmas in deep crustal hot zones. J. Petrol. 47, 505–539 (2006).

    Article  Google Scholar 

  46. Core, D. P., Kesler, S. E. & Essene, E. J. Unusually Cu-rich magmas associated with giant porphyry copper deposits: Evidence from Bingham, Utah. Geology 34, 41–44 (2006).

    Article  Google Scholar 

  47. Farmer, G. L. & DePaolo, D. J. Origin of Mesozoic and Tertiary granite in the western United States and implications for pre-Mesozoic crustal structure: 2. Nd and Sr isotopic studies of unmineralized and Cu-mineralized and Mo-mineralized granite in the Precambrian craton. J. Geophys. Res. 89, 141–160 (1984).

    Article  Google Scholar 

  48. Pettke, T., Oberli, F. & Heinrich C. A. The magma and metal source of giant porphyry-type ore deposits, based on lead isotope microanalysis of individual fluid inclusions. Earth Planet. Sci. Lett. 296, 267–277 (2010).

    Article  Google Scholar 

  49. Candela, P. A. & Piccoli, P. M. in Economic Geology 100th Anniversary Volume (eds Hedenquist, J. W., Thompson, J. F. H., Goldfarb, R. J. & Richards, J. P.) 25–38 (Society of Economic Geologists, 2005).

    Google Scholar 

  50. Wallace, P. J. Volatiles in subduction zone magmas: Concentrations and fluxes based on melt inclusion and volcanic gas data. J. Volcanol. Geotherm. Res. 140, 217–240 (2005).

    Article  Google Scholar 

  51. Pokrovski, G. S., Borisova, A. Y. & Harrichoury, J-C. The effect of sulfur on vapour-liquid fractionation of metals in hydrothermal systems. Earth Planet. Sci. Lett. 266, 345–362 (2008).

    Article  Google Scholar 

  52. Chiaradia, M., Ulianov, A., Kouzmanov, K. & Be, B. Why large porphyry Cu deposits like high Sr/Y magmas? Sci. Rep. 2, 685 (2012).

    Article  Google Scholar 

  53. Matzel, J. E. P., Bowring, S. A. & Miller, R. B. Time scales of pluton construction at differing crustal levels; examples from the Mount Stuart and Tenpeak intrusions, north Cascades. Geol. Soc. Am. Bull. 118, 1412–1430 (2006).

    Article  Google Scholar 

  54. Schaltegger, U. et al. Zircon and titanite recording 1.5 million years of magma accretion, crystallization and initial cooling in a composite pluton (southern Adamello batholith, northern Italy). Earth Planet. Sci. Lett. 286, 208–218 (2009).

    Article  Google Scholar 

  55. Schoene, B. et al. Rates of magma differentiation and emplacement in a ballooning pluton recorded by U–Pb TIMS-TEA, Adamello batholith, Italy. Earth Planet. Sci. Lett. 355–356, 162–173 (2012).

    Article  Google Scholar 

  56. Halter, W. E., Heinrich, C. A. & Pettke, T. Magma evolution and the formation of porphyry Cu-Au ore fluids: Evidence from silicate and sulfide melt inclusions. Miner. Deposita 39, 845–863 (2005).

    Article  Google Scholar 

  57. Harris, A. C. et al. Multimillion year thermal history of a porphyry copper deposit: Application of U-Pb, 40Ar/39Ar and (U-Th)/He chronometers, Bajo de la Alumbrera copper-gold deposit, Argentina. Miner. Deposita 43, 295–314 (2008).

    Article  Google Scholar 

  58. von Quadt, A. et al. Zircon crystallization and the lifetimes of ore-forming magmatic-hydrothermal systems. Geology 39, 731–734 (2011).

    Article  Google Scholar 

  59. Glazner, A. F., Bartley, J. M., Coleman, D. S., Gray, W. & Taylor, Z. T. Are plutons assembled over millions of years by amalgamation from small magma chambers? GSA Today 14, 4–11 (2004).

    Article  Google Scholar 

  60. Sparks, R. S. J. & Marshall, L. A. Thermal and mechanical constraints on mixing between mafic and silicic magmas. J. Volcanol. Geotherm. Res. 29, 99–124 (1986).

    Article  Google Scholar 

  61. Hattori, K. & Keith, J. D. Contribution of mafic melt to porphyry copper mineralization: Evidence from Mount Pinatubo, Philippines, and Bingham Canyon, Utah, USA. Miner. Deposita 36, 799–806 (2001).

    Article  Google Scholar 

  62. Candela, P. A. & Holland, H. D. A mass transfer model for copper and molybdenum in magmatic hydrothermal systems: The origin of porphyry-type ore deposits. Econ. Geol. 81, 1–19 (1986).

    Article  Google Scholar 

  63. Webster, J. D. & Botcharnikov, R. E. in Sulfur in Magmas and Melts: Its Importance for Natural and Technical Processes (eds Behrens, H. & Webster, J. D.) 247–283 (Reviews in Mineralogy and Geochemistry 73, Mineralogical Society of America, 2011).

    Book  Google Scholar 

  64. Seedorff, E. et al. in Economic Geology 100th Anniversary Volume (eds Hedenquist, J. W., Thompson, J. F. H., Goldfarb, R. J. & Richards, J. P.) 251–298 (Society of Economic Geologists, 2005).

    Google Scholar 

  65. Landtwing, M. R. et al. The Bingham Canyon porphyry Cu-Mo-Au deposit: III. Zoned copper-gold ore deposition by magmatic vapor expansion. Econ. Geol. 105, 91–118 (2010).

    Article  Google Scholar 

  66. Williams-Jones, A. E., Migdisov, A. A., Archibald, S. M. & Xiao, Z. F. in Water-Rock Interactions, Ore Deposits, and Environmental Geochemistry (ed Hellman, R. & Wood, S. A.) 279–305 (Geochemical Society Special Publication 7, Geochemical Society, 2002).

    Google Scholar 

  67. Pokrovski, G. S., Roux, J. & Harrichoury, J. C. Fluid density control on vapor-liquid partitioning of metals in hydrothermal systems. Geology 33, 657–660 (2005).

    Article  Google Scholar 

  68. Weis, P., Driesner, T. & Heinrich, C. A. Porphyry-copper ore shells form at stable pressure-temperature fronts within dynamic fluid plumes. Science 338, 1613–1616 (2012).

    Article  Google Scholar 

  69. Hemley, J. J. & Hunt, J. P. Hydrothermal ore-forming processes in the light of studies in rock-buffered systems: II. Some general geological applications. Econ. Geol. 87, 23–43 (1992).

    Article  Google Scholar 

  70. Ingebritsen, S. E. & Manning, C. E. Permeability of the continental crust: Dynamic variations inferred from seismicity and metamorphism. Geofluids 10, 193–205 (2010).

    Google Scholar 

  71. Richards, J. P. Giant ore deposits formed by optimal alignments and combinations of geological processes. Nature Geosci. http://dx.doi.org/10.1038/ngeo1920 (2013).

  72. Halter, W. E., Pettke, T., Heinrich, T. & Heinrich, C. A. The origin of Cu/Au ratios in porphyry-type ore deposits. Science 296, 1844–1846 (2002).

    Article  Google Scholar 

  73. Harris, A. C., Kamenetsky, V. S., White, N. C., van Achterbergh, E. & Ryan, C. G. Melt inclusions in veins: Linking magmas and porphyry Cu deposits. Science 302, 2109–2111 (2003).

    Article  Google Scholar 

  74. Lickfold, V., Cooke, D. R., Crawford, A. J. & Fanning, C. Shoshonitic magmatism and the formation of the Northparkes porphyry Cu-Au deposits, New South Wales. Aus. J. Earth Sci. 54, 417–444 (2007).

    Article  Google Scholar 

  75. Nadeau, O., Williams-Jones, A. E. & Stix, J. Sulphide magma as a source of metals in arc-related magmatic hydrothermal ore fluids. Nature Geosci. 3, 501–505 (2005).

    Article  Google Scholar 

  76. Keith, J. D. et al. The role of magmatic sulfides and mafic alkaline magmas in the Bingham and Tintic mining districts, Utah. J. Petrol. 38, 1679–1690 (1997).

    Article  Google Scholar 

  77. Rowland, M. R. & Wilkinson, J. J. in Water-Rock Interaction IX (eds Arehart, G. B. & Hulston, J. R.) 569–573 (Balkema, 1998).

    Google Scholar 

  78. Halter, W. E. et al. From andesitic volcanism to the formation of a porphyry Cu-Au mineralizing magma chamber: The Farallon Negro volcanic complex, northwestern Argentina. J. Volcanol. Geotherm. Res. 136, 1–30 (2004).

    Article  Google Scholar 

  79. Zajacz, Z. & Halter, W. Copper transport by high temperature, sulfur-rich magmatic vapor: Evidence from silicate melt and vapor inclusions in a basaltic andesite from the Villarrica volcano (Chile). Earth Planet. Sci. Lett. 282, 115–121 (2009).

    Article  Google Scholar 

  80. Sillitoe, R. H. Major gold deposits and belts of the North and South American Cordillera: Distribution, tectonomagmatic settings, and metallogenic considerations. Econ. Geol. 103, 663–687 (2008).

    Article  Google Scholar 

  81. Rohrlach, B. D. & Loucks, R. R. in Super Porphyry Copper and Gold Deposits - A Global Perspective Vol. 2 (ed. Porter, T. M.) 369–407 (PGC, 2005).

    Google Scholar 

  82. Loucks, R. Chemical characteristics, geodynamic settings, and petrogenesis of copper ore-forming arc magmas. CET Quarterly News 19, 1–10 (2012).

    Google Scholar 

  83. Rooney, T. O., Franceschi, P. & Hall, C. M. Water-saturated magmas in the Panama Canal region: A precursor to adakite-like magma generation? Contrib. Mineral. Petrol. 161, 373–388 (2011).

    Article  Google Scholar 

  84. Simon, A. C. & Ripley, E. M. in Sulfur in Magmas and Melts: Its Importance for Natural and Technical Processes (eds Behrens, H. & Webster, J. D.) 513–578 (Reviews in Mineralogy and Geochemistry 73, Mineralogical Society of America, 2011).

    Book  Google Scholar 

  85. Simon, A. C., Pettke, T., Candela, P. A., Piccoli, P. M. & Heinrich, C. A. Copper partitioning in a melt-vapor-brine-magnetite-pyrrhotite assemblage. Geochim. Cosmochim. Acta 70, 5583–5600 (2006).

    Article  Google Scholar 

  86. Jenner, F. E., O'Neill, H. St C., Arculus, R. J. & Mavrogenes, J. A. The magnetite crisis in the evolution of arc-related magmas and the initial concentration of Au, Ag and Cu. J. Petrol. 51, 2445–2464 (2010).

    Article  Google Scholar 

  87. Bell, A., Simon, A. & Guillong, M. Experimental constraints on Pt, Pd, and Au partitioning in silicate melt-sulfide-oxide-aqueous fluid systems at 800°C, 150 MPa, and variable sulfur fugacity. Geochim. Cosmochim. Acta 73, 5778–5792 (2009).

    Article  Google Scholar 

  88. Larocque, A. C. L., Stimac, J. A., Keith, J. D. & Huminicki, M. A. E. Evidence for open-system behavior in immiscible Fe-S-O liquids in silicate magmas: Implications for contributions of metals and sulfur to ore-forming fluids. Can. Mineral. 38, 1233–1249 (2000).

    Article  Google Scholar 

  89. Ulrich, T., Günther, D. & Heinrich, C. A. Gold concentrations of magmatic brines and the metal budget of porphyry copper deposits. Nature 399, 676–679 (1999).

    Article  Google Scholar 

  90. Rusk, B. G., Reed, M. H., Dilles, J. H., Klemm, L. M. & Heinrich, C. A. Compositions of magmatic hydrothermal fluids determined by LA-ICP-MS of fluid inclusions from the porphyry copper-molybdenum deposit at Butte, MT. Chem. Geol. 210, 173–199 (2004).

    Article  Google Scholar 

  91. Wilkinson, J. J. et al. Ore fluid chemistry in super-giant porphyry copper deposits. Proc. PACRIM 2008 Congress 295–298 (Australasian Institute of Mining and Metallurgy, 2008).

  92. Bell, A. S., Simon, A. & Guillong, M. Gold solubility in oxidized and reduced, water-saturated mafic melt. Geochim. Cosmochim. Acta 75, 1718–1732 (2011).

    Article  Google Scholar 

  93. Sun, W., Arculus, R. J., Kamenetsky, V. S. & Binns, R. A. Release of gold-bearing fluids in convergent margin magmas prompted by magnetite crystallization. Nature 431, 975–978 (2004).

    Article  Google Scholar 

  94. Stanton, R. L. Ore Elements in Arc Lavas (Oxford Univ. Press, 1994).

    Google Scholar 

  95. Cloos, M. Bubbling magma chambers, cupolas, and porphyry copper deposits. Int. Geol. Rev. 43, 285–311 (2001).

    Article  Google Scholar 

  96. Mathur, R., Titley, S., Ruiz, J., Gibbins, S. & Friehauf, K. A Re-Os isotope study of sedimentary rocks and copper-gold ores from the Ertsberg district, West Papua, Indonesia. Ore Geol. Rev. 26, 207–226 (2005).

    Article  Google Scholar 

  97. Crerar, D. A. & Barnes, H. L. Ore solution chemistry V: Solubilities of chalcopyrite and chalcocite assemblages in hydrothermal solution at 200° to 350°C. Econ. Geol. 71, 772–794 (1976).

    Article  Google Scholar 

  98. Audétat, A., Günther, D. & Heinrich, C. A. Causes for large-scale metal zonation around mineralized plutons: Fluid inclusion LA-ICP-MS evidence from the Mole Granite, Australia. Econ. Geol. 95, 1563–1581 (2000).

    Article  Google Scholar 

  99. Stoffell, B., Wilkinson, J. J. & Jeffries, T. E. Metal transport and deposition in hydrothermal veins revealed by 213nm UV laser ablation microanalysis of single fluid inclusions. Am. J. Sci. 304, 533–557 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

The contents of this Review reflect the views of the author based on a wealth of previous work by many scientists; any errors, omissions or misrepresentations are my own. I would like to thank colleagues and my current students for discussions and comments during the writing of this article, in particular D. Cooke, N. White, Z. Chang, E. Spencer, M. Loader, J. Longridge, A. Pacey and S. Kocher. I am indebted to R. Large for providing me with the opportunity to work at the ARC Centre of Excellence in Ore Deposits (CODES) at the University of Tasmania on a leave of absence from Imperial College London, 2008–2010, where initial ideas for this Review were developed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamie J. Wilkinson.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Supplementary information

Supplementary Information

Mineralization model for porphyry ore deposits (PDF 343 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilkinson, J. Triggers for the formation of porphyry ore deposits in magmatic arcs. Nature Geosci 6, 917–925 (2013). https://doi.org/10.1038/ngeo1940

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo1940

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing