Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Continental-root control on the genesis of magmatic ore deposits

Subjects

Abstract

Giant magma-related ore systems are prime targets for modern mineral exploration, yet it is unclear what controls their formation. The magmas originate in Earth's convecting mantle. To reach the surface, they must pass through the stagnant sub-continental lithospheric mantle, but the role of this mantle in ore genesis is vigorously debated. In one view, the ascending magmas are already metal-rich and the sub-continental lithospheric mantle acts only as a passive, buoyant raft on which the continental crust — the final store for the ore deposits — rides. Here we argue that the sub-continental lithospheric mantle may actually contain ore-forming elements that could be entrained by ascending magmas, and that it therefore plays a significant role in the genesis of magmatic ore. Specifically, we suggest that some types of magma pick up ore-forming components, such as diamonds and gold, and possibly platinum-group elements, during their passage through the mantle lithosphere, and that the three-dimensional structure of the lithosphere helps to focus deposition of the ore. We therefore suggest that models for ore genesis and exploration need to incorporate the entire lithosphere to be effective.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Upper-lithospheric domains (0–100 km) derived from integrated mapping of geological and geophysical data.
Figure 2: Vs tomography of the lithospheric mantle.
Figure 3: Re-Os data for LIPs and other magmas.
Figure 4: Interactions between magmas and the SCLM.

Similar content being viewed by others

References

  1. Griffin, W. L., O'Reilly, S. Y., Afonso, J. C. & Begg, G. C. The composition and evolution of lithospheric mantle: A re-evaluation and its tectonic implications. J. Petrology 50, 1185–1204 (2009).

    Article  Google Scholar 

  2. Griffin, W. L., Graham, S., O'Reilly, S. Y. & Pearson, N. J. Lithosphere evolution beneath the Kaapvaal Craton: Re-Os systematics of sulphides in mantle-derived peridotites. Chem. Geol. 208, 89–118 (2004).

    Article  Google Scholar 

  3. Groves, D. I., Ho, S. E., Rock, N. M. S., Barley, M. E. & Muggeridge, M. Y. Archaean cratons, diamond and platinum; evidence for coupled long-lived crust–mantle systems. Geology 15, 801–805 (1987).

    Article  Google Scholar 

  4. Herzberg, C. & Rudnick, R. Formation of cratonic lithosphere: an integrated thermal and petrological model. Lithos 149, 4–15 (2012).

    Article  Google Scholar 

  5. Wyman, D. A. & Kerrich, R. Formation of Archaean continental lithospheric roots: The role of mantle plumes. Geology 30, 543–546 (2002).

    Article  Google Scholar 

  6. Arndt, N. T., Coltice, N., Helmstaedt, H. & Gregoire, M. Origin of Archaean subcontinental lithospheric mantle: some petrological constraints. Lithos 109, 61–71 (2009).

    Article  Google Scholar 

  7. Helmstaedt, H. H. & Gurney, J. J. Geotectonic controls of primary diamond deposits: implications for area selection. J. Geochem. Explor. 53, 125–144 (1995).

    Article  Google Scholar 

  8. Stachel, T., Viljoen, K. S., Brey, G. & Harris, J. W. Metasomatic processes in lherzolitic and harzburgitic domains of diamondiferous lithospheric mantle: REE in garnets from xenoliths and inclusions in diamonds. Earth Planet. Sci. Lett. 159, 1–12 (1998).

    Article  Google Scholar 

  9. Griffin, W. L. & O'Reilly, S. Y. Cratonic lithospheric mantle: Is anything subducted? Episodes 30, 43–53 (2007).

    Article  Google Scholar 

  10. Beyer, E. E., Griffin, W. L. & O'Reilly, S. Y. Transformation of Archaean lithospheric mantle by refertilization: Evidence from exposed peridotites in the Western Gneiss Region, Norway. J. Petrology 47, 1611–1636 (2006).

    Article  Google Scholar 

  11. Huang, J-X., Greau, Y., Griffin, W. L., O'Reilly, S. Y. & Pearson, N. J. Multi-stage origins of Roberts Victor eclogites: Progressive metasomatism and its isotopic effects. Lithos 142–143, 161–181 (2012).

    Article  Google Scholar 

  12. Begg, G. C. et al. The lithospheric architecture of Africa: Seismic tomography, mantle petrology and tectonic evolution. Geosphere 5, 23–50 (2009).

    Article  Google Scholar 

  13. Griffin, W. L. et al. Archaean lithospheric mantle beneath Arkansas: continental growth by microcontinent accretion. Bull. Geol. Soc. Am. 123, 1763–1775 (2011).

    Article  Google Scholar 

  14. Belousova, E. A. et al. The growth of the continental crust: Constraints from zircon Hf-isotope data. Lithos 119, 457–466 (2010).

    Article  Google Scholar 

  15. Fouch, M. J. et al. Mantle seismic structure beneath the Kaapvaal and Zimbabwe Cratons. S. Afr. J. Geol. 107, 33–44 (2004).

    Article  Google Scholar 

  16. Jones, A. G. et al. Area selection for diamonds using magnetotellurics: Examples from southern Africa. Lithos 112S, 83–92 (2009).

    Article  Google Scholar 

  17. Malkovets, V. G., Griffin, W. L., O'Reilly, S. Y. & Wood, B. J. Diamond, subcalcic garnet and mantle metasomatism: Kimberlite sampling patterns define the link. Geology 35, 339–342 (2007).

    Article  Google Scholar 

  18. Naldrett, A. J. Secular variation of magmatic sulphide deposits and their source magmas. Econ. Geol. 105, 669–688 (2010).

    Article  Google Scholar 

  19. Herzberg, C. & O'Hara M. J. Plume-associated ultramafic magmas of Phanerozoic age. J. Petrol. 43, 1857–1883 (2002).

    Article  Google Scholar 

  20. Begg, G. C. et al. Lithospheric, cratonic and geodynamic setting of Ni-Cu-PGE sulphide deposits. Econ. Geol. 105, 1057–1070 (2010).

    Article  Google Scholar 

  21. Wendlandt, R. F. Sulfur saturation of basalt and andesite melts at high pressures and temperatures. Am. Mineral. 67, 877–885 (1982).

    Google Scholar 

  22. Ripley, E. M. & Li, C. Sulfide saturation in mafic magmas: is external sulfur required for magmatic Ni-Cu-(PGE) ore genesis? Econ. Geol. 108, 45–58 (2013).

    Article  Google Scholar 

  23. Lesher, C. M. & Keays, R. R. in The Geology, Geochemistry, Mineralogy, and Mineral Beneficiation of the Platinum-Group Elements Special Vol. 54 (ed. Cabri, L. J.) 579–617 (Canadian Institute of Mining, Metallurgy and Petroleum, 2002).

    Google Scholar 

  24. Urvantsev, N. N. in Geology and deposits of the Noril'sk region 234–238 (1971).

    Google Scholar 

  25. Evans-Lamswood, D. M. et al. Physical controls associated with the distribution of sulphides in the Voisey's Bay Ni-Cu-Co deposit, Labrador. Econ. Geol. 95, 749–770 (2000).

    Google Scholar 

  26. Ripley E. M & Li, C. Sulfur isotopic exchange and metal enrichment in the formation of magmatic Cu-Ni-(PGE) deposits. Econ. Geol. 98, 635–641 (2003).

    Article  Google Scholar 

  27. Maier, W. D. et al. The Kabanga Ni sulphide deposit, Tanzania: I. Geology, petrography, silicate rock geochemistry, and sulphur and oxygen isotopes. Miner. Deposita. 45, 419–441 (2010).

    Article  Google Scholar 

  28. Seat, Z. et al. The Nebo-Babel Ni-Cu-PGE sulfide deposit (West Musgrave, Australia): Part 1, U/Pb zircon ages, whole-rock and mineral chemistry, and O-Sr-Nd isotope compositions of the intrusion, with constraints on petrogenesis. Econ. Geol. 106, 527–556 (2011).

    Article  Google Scholar 

  29. Maier, W. D. & Groves, D. I., 2011. Temporal and spatial controls on the formation of magmatic PGE and Ni-Cu deposits. Miner. Deposita 46, 841–857 (2011).

    Article  Google Scholar 

  30. Zhang, M., O'Reilly, S. Y., Wang, K-L., Hronsky, J. & Griffin, W. L. Flood basalts and metallogeny: the lithospheric mantle connection. Earth Sci. Rev. 86, 145–174 (2008).

    Article  Google Scholar 

  31. Fiorentini, M. L. et al. Platinum group element geochemistry of mineralised and nonmineralised komatiites and basalts. Econ. Geol. 105, 795–823 (2010).

    Article  Google Scholar 

  32. Lorand, J-P, Luguet, A. & Alard, O. Platinum-group element systematics and petrogenetic processing of the continental upper mantle: A review. Lithos 164–167, 2–21 (2013).

    Article  Google Scholar 

  33. Richardson, S. H. & Shirey, S. B. Continental mantle signature of Bushveld magmas and coeval diamonds. Nature 453, 910–913 (2008).

    Article  Google Scholar 

  34. Hronsky, J. M. A., Groves, D. I., Loucks, R. R. & Begg, G. C. A unified model for gold mineralisation in accretionary orogens and implications for regional-scale exploration targeting methods. Miner. Deposita. 47, 339–358 (2012).

    Article  Google Scholar 

  35. Groves D. I., Bierlein, F. P., Meinert, L. D. & Hitzman, M. W. Iron-oxide copper-gold (IOCG) deposits through Earth history: implications for origin, lithospheric setting, and distinction from other epigenetic iron oxide deposits. Econ. Geol. 105, 641–654 (2010).

    Article  Google Scholar 

  36. Mair, J. L., Farmer, G. L., Groves, D. I., Hart, C. J. R. & Goldfarb, R. J. Petrogenesis of mid-Cretaceous post-collisional magmatism at Scheelite Dome, Yukon, Canada: evidence or a lithospheric mantle source for intrusion-related gold systems. Econ. Geol. 106, 451–480 (2011).

    Article  Google Scholar 

  37. Muntean, J. L. . Cline, J. S., Simon, A. C. & Longo, A. A. Magmatic hydrothermal origin of Nevada's Carlin-type gold deposits. Nature Geosci. 4, 122–127 (2011).

    Article  Google Scholar 

  38. Tomkins, A. G. Windows of metamorphic sulphur liberation in the crust: Implications for gold deposit genesis. Geochim. Cosmochim. Acta 74, 3246–3259 (2010).

    Article  Google Scholar 

  39. Lorand, J. P., Schmidt, G., Palme, H. & Kratz, K. L. Highly siderophile element geochemistry of the Earth's mantle: new data for the Lanzo (Italy) and Ronda (Spain) orogenic peridotite bodies. Lithos 53, 149–164 (2000).

    Article  Google Scholar 

  40. McInnes, B. I. A., McBride, J. S., Evans, N. J., Lambert, D. D. & Andrew, A. S. Osmium isotope constraints on ore metal recycling in subduction zones. Science 286, 512–516 (1999).

    Article  Google Scholar 

  41. Gregoire, M., McInnes, B. I. A. & O'Reilly, S. Y. Hydrous metasomatism of oceanic sub-arc mantle, Lihir, Papua New Guinea. Part 2. Trace element characteristics of slab-derived fluids. Lithos 59, 91–108 (2001).

    Article  Google Scholar 

  42. Zheng, J., Sun, M., Zhou, M.-F. & Robinson, P. Trace elemental and PGE geochemical constraints of Mesozoic and Cenozoic peridotitic xenoliths on lithospheric evolution of the North China Craton. Geochim. Cosmochim. Acta 69, 3401–3408 (2005).

    Article  Google Scholar 

  43. Saunders, J. E., Pearson, N. J. & O'Reilly, S. Y. Gold mobility in the mantle: Constraints from sulphides in pyroxenites and lherzolite. Mineral. Mag. 75, 1802 (2011).

    Google Scholar 

  44. Maier, W. D. et al. The concentration of platinum-group elements and gold in southern African and Karelian kimberlite-hosted mantle xenoliths: Implications for the noble metal content of the Earth's mantle. Chem. Geol. 302–303, 119–135 (2012).

    Article  Google Scholar 

  45. Grainger, C. J., Groves, D. I., Tallarico, F. H. B., Fletcher, I. R. Metallogenesis of the Carajas Mineral Province, Southern Amazon Craton, Brazil: varying styles of Archaean through Paleoproterozoic to Neoproterozoic base- and precious-metal mineralisation. Ore Geol. Rev. 33, 451–489 (2008).

    Article  Google Scholar 

  46. Hill, K. C., Kendrick, R. D., Crowhurst, P. V. & Gow, P. A. Copper-gold mineralization in New Guinea: tectonics, lineaments, thermochronology and structure. Aust. J. Earth Sci. 49, 737–752 (2002).

    Article  Google Scholar 

  47. Richards, J. P. Post-subduction porphyry Cu-Au and epithermal Au deposits: Products of remelting of subduction-modified lithosphere. Geology 37, 247–250 (2009).

    Article  Google Scholar 

  48. Pettke, T., Oberli, F. & Heinrich, C. A. The magma and metal source of giant porphyry-type ore deposits, based on lead isotope microanalysis of individual fluid inclusions. Earth Planet. Sci. Lett. 296, 267–277 (2010).

    Article  Google Scholar 

  49. Lee, C.-T., Yin, Q., Rudnick, R. L. & Jacobsen, S. B. Preservation of ancient and fertile lithospheric mantle beneath the southwestern United States. Nature 411, 69–73 (2001).

    Article  Google Scholar 

  50. Schmandt, B. & Humphreys, E. Complex subduction and small-scale convection revealed by body-wave tomography of the western United States upper mantle. Earth Planet. Sci. Lett. 297, 435–445 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

We thank Steve Grand and Brandon Schmandt for providing seismic tomography data; Jon Hronsky, Bob Loucks, Norman Pearson, Steve Barnes and Steve Beresford for useful discussions; and Ming Zhang for his comprehensive review of isotopic data. We acknowledge long-term support for lithospheric analysis by WMC Resources Ltd, BHP Billiton Ltd and Macquarie University. Extensive analytical work at GEMOC used instrumentation purchased with, and supported by, funding from the ARC, DEST, Macquarie University and industry. Further support was provided by ARC Discovery and Linkage Grants to W.L.G. and S.Y.O'R. This is contribution 207 from the ARC Centre of Excellence for Core to Crust Fluid Systems (www.ccfs.mq.edu.au) and 848 from the GEMOC Key Centre (www.gemoc.mq.edu.au).

Author information

Authors and Affiliations

Authors

Contributions

All of the authors contributed to the lithospheric mapping and geochemical analysis for this paper. G.C.B. assembled much of the information on metallic ore deposits; W.L.G., S.Y.O'R. and G.C.B. synthesized the information on lithosphere composition and structure and diamond deposits. Most of the manuscript has been written by W.L.G. and G.C.B., with important contributions by S.Y.O'R.

Corresponding author

Correspondence to W. L. Griffin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Griffin, W., Begg, G. & O'Reilly, S. Continental-root control on the genesis of magmatic ore deposits. Nature Geosci 6, 905–910 (2013). https://doi.org/10.1038/ngeo1954

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo1954

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing