Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Hydrologic control of forearc strength and seismicity in the Costa Rican subduction zone

Abstract

Subduction zones can exhibit variable seismic behaviour, ranging from great earthquakes to slow slip1. This variability may be linked to fault frictional properties2, and the rheology and structure of the upper plate3. The subduction zone beneath the Nicoya Peninsula, Costa Rica, is characterized by strong variations in fault-slip behaviour and a lateral change in the origin of the subducting plate4,5,6,7. In the northwest, the plate interface is locked8,9, and experiences large, infrequent earthquakes8,9, and the subducting plate is formed at the East Pacific Rise. In contrast, in the southeast, slow-slip events occur frequently10 and the subducting plate is formed at the Cocos–Nazca spreading centre. Here we use seismic receiver-function data to analyse the structure of the subduction zone beneath the Nicoya Peninsula. We find extremely high P–S seismic-velocity ratios within the entire subducting oceanic crust that we interpret as high pore-fluid pressure11,12. Velocity ratios in the overriding continental crust, however, change from lower values in the northwest to higher ones in the southeast, indicating a disparity in fluid accumulation. We infer that this disparity is caused by a higher supply of fluid from the subducting slab in the southeast, owing to the permeability structure of oceanic crust formed at the Cocos–Nazca spreading centre. We suggest that the spatial gradient in fluid content influences upper-plate strength and controls the segmentation of seismogenic behaviour in this subduction zone.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tectonic setting and location of broadband seismic stations along the Nicoya Peninsula, Costa Rica.
Figure 2: Seismic structure within the subduction zone forearc.
Figure 3: Along-strike variations and northwest–southeast regionalization of Vp/Vs along the Nicoya Peninsula.
Figure 4: Schematic interpretation of results.

Similar content being viewed by others

References

  1. Schwartz, S. Y. & Rokosky, J. M. Slow slip events and seismic tremor at circum-Pacific subduction zones. Rev. Geophys. 45, RG3004 (2007).

    Article  Google Scholar 

  2. Lay, T. et al. Depth-varying rupture properties of subduction zone megathrust faults. J. Geophys. Res. 117, B04311 (2012).

    Article  Google Scholar 

  3. McCaffrey, R. On the role of the upper plate in great subduction zone earthquakes. J. Geophys. Res. 98, 11953–11966 (1993).

    Article  Google Scholar 

  4. Newman, A. V. et al. Along-strike variability in the updip limit of the seismogenic zone below Nicoya Peninsula, Costa Rica. Geophys. Res. Lett. 29, 1977 (2002).

    Google Scholar 

  5. DeShon, H. R. et al. Seismogenic zone structure beneath the Nicoya Peninsula, Costa Rica, from 3D local earthquake P- and S- wave tomography. Geophys. J. Int. 164, 109–124 (2006).

    Article  Google Scholar 

  6. Harris, R. et al. Thermal regime of the Costa Rican convergent margin: 1. Along-strike variations in heat flow from probe measurements and estimated from bottom-simulating reflectors. Geochem. Geophys. Geosyst. 11, Q12S28 (2010).

    Google Scholar 

  7. Barckhausen, U. et al. Revised tectonic boundaries in the Cocos Plate off Costa Rica: Implications for the segmentation of the convergent margin and for plate tectonic models. J. Geophys. Res. 106, 19207–19220 (2001).

    Article  Google Scholar 

  8. LaFemina, P. et al. Fore-arc motion and Cocos Ridge collision in Central America. Geochem. Geophys. Geosyst. 10, Q05S14 (2009).

    Article  Google Scholar 

  9. Feng, L. et al. Active deformation near the Nicoya Peninsula, Northwestern Costa Rica, between 1996 and 2010: Interseismic megathrust coupling. J. Geophys. Res. 117, B06407 (2012).

    Article  Google Scholar 

  10. Jiang, Y. et al. Slow slip events in Costa Rica detected by continuous GPS observations, 2002–2011. Geochem. Geophys. Geosyst. 13, Q04006 (2012).

    Article  Google Scholar 

  11. Shelly, D. R., Beroza, G. C., Ide, S. & Nakamula, S. Low-frequency earthquakes in Shikoku, Japan, and their relationship to episodic tremor and slip. Nature 442, 188–191 (2006).

    Article  Google Scholar 

  12. Audet, P., Bostock, M. G., Christensen, N. I. & Peacock, S. M. Seismic evidence for overpressured subducting oceanic crust and megathrust fault sealing. Nature 457, 76–78 (2009).

    Article  Google Scholar 

  13. Walter, J. I., Schwartz, S. Y., Protti, J. M. & Gonzalez, V. Persistent tremor within the northern Costa Rica seismogenic zone. Geophys. Res. Lett. 38, L01307 (2011).

    Article  Google Scholar 

  14. Beroza, G. C. & Ide, S. Slow earthquakes and nonvolcanic tremor. Annu. Rev. Earth Planet. Sci. 39, 271–296 (2011).

    Article  Google Scholar 

  15. Hippchen, S. & Hyndman, R. D. Thermal and structural models of the Sumatra subduction zone: Implications for the megathrust seismogenic zone. J. Geophys. Res. 113, B12103 (2008).

    Article  Google Scholar 

  16. Rubinstein, J. L. et al. Seismic wave triggering of nonvolcanic tremor, episodic tremor and slip, and earthquakes on Vancouver Island. J. Geophys. Res. 114, B00A01 (2009).

    Article  Google Scholar 

  17. Liu, Y. & Rice, J. R. Spontaneous and triggered aseismic deformation transients in a subduction fault model. J. Geophys. Res. 112, B09404 (2007).

    Google Scholar 

  18. Segall, P., Rubin, A. M., Bradley, A. M. & Rice, J. R. Dilatant strengthening as a mechanism for slow slip events. J. Geophys. Res. 115, B12305 (2010).

    Article  Google Scholar 

  19. Harris, R. N. et al. Thermal regime of the Costa Rican convergent margin: 2. Thermal models of the shallow Middle America subduction zone offshore Costa Rica. Geochem. Geophys. Geosyst. 11, Q12S29 (2010).

    Google Scholar 

  20. Spinelli, G. A. & Saffer, D. M. Trench-parallel fluid flow in subduction zones resulting from temperature differences. Geochem. Geophys. Geosyst. 8, Q09009 (2007).

    Article  Google Scholar 

  21. Christensen, N. I. Poisson’s ratio and crustal seismology. J. Geophy. Res. 101, 3139–3156 (1996).

    Article  Google Scholar 

  22. Peacock, S. M., Christensen, N. I., Bostock, M. G. & Audet, P. High pore pressures and porosity at 35 km depth in the Cascadia subduction zone. Geology 39, 471–474 (2011).

    Article  Google Scholar 

  23. Dinc, A. N., Rabbel, W., Flueh, E. R. & Taylor, W. Mantle wedge hydration in Nicaragua from local earthquake tomography. Geophys. J. Int. 186, 99–112 (2011).

    Article  Google Scholar 

  24. Ranero, C. R., Morgan, J. P., McIntosh, K. & Reichert, C. Bending-related faulting and mantle serpentinization at the Middle America trench. Nature 425, 367–373 (2003).

    Article  Google Scholar 

  25. Fisher, A. T., Davis, E. E. & Becker, K. Borehole-to-borehole hydrologic response across 2.4 km in the upper oceanic crust: Implications for crustal-scale properties. J. Geophys. Res. 113, B07106 (2008).

    Article  Google Scholar 

  26. Brudzinski, M. R. & Allen, R. M. Segmentation in episodic tremor and slip all along Cascadia. Geology 35, 907–910 (2007).

    Article  Google Scholar 

  27. Outerbridge, K. C. et al. A tremor and slip event on the Cocos-Caribbean Subduction zone as measured by a GPS and seismic network on the Nicoya Peninsula, Costa Rica. J. Geophys. Res. 115, B10408 (2010).

    Article  Google Scholar 

  28. Stankova-Pursley, J., Bilek, S. L., Phillips, W. S. & Newman, A. V. Along-strike variations of earthquake apparent stress at the Nicoya Peninsula, Costa Rica, subduction zone. Geochem. Geophys. Geosyst. 12, Q08002 (2011).

    Article  Google Scholar 

  29. Ghosh, A. A., Newman, A. V., Thomas, A. M. & Farmer, G. T. Interface locking along the subduction megathrust from b value mapping near Nicoya Peninsula, Costa Rica. Geophys. Res. Lett. 35, L01301 (2008).

    Google Scholar 

  30. Hayes, G. P., Wald, D. J. & Johnson, R. L. Slab1.0: A three-dimensional model of global subduction zone geometries. J. Geophys. Res. 117, B01302 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Natural Science and Engineering Research Council through a Discovery Grant to P.A. and the National Science Foundation through grants OCE-0841061 and EAR-0842338 to S.Y.S.

Author information

Authors and Affiliations

Authors

Contributions

P.A. performed data processing and inversion. P.A. and S.Y.S. wrote the paper.

Corresponding author

Correspondence to Pascal Audet.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 6958 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Audet, P., Schwartz, S. Hydrologic control of forearc strength and seismicity in the Costa Rican subduction zone. Nature Geosci 6, 852–855 (2013). https://doi.org/10.1038/ngeo1927

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo1927

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing