Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Seafloor deformation and forecasts of the April 2011 eruption at Axial Seamount

Abstract

Axial Seamount is an active submarine volcano located at the intersection between the Cobb hotspot and the Juan de Fuca spreading centre in the northeast Pacific Ocean1,2. The volcano has been closely monitored since it erupted in 1998 (refs 3, 4). Since then, Axial Seamount seemed to exhibit a similar inflation–deflation cycle to basaltic volcanoes on land and, on that basis, was expected to erupt again sometime before 2014 or 2020 (refs 5, 6). In April 2011 Axial Seamount erupted. Here we report continuous measurements of ocean bottom pressure that document the deflation–inflation cycle of Axial Seamount between 1998 and 2011. We find that the volcano inflation rate, caused by the intrusion of magma, gradually increased in the months leading up to the 2011 eruption. Sudden uplift occurred 40–55 min before the eruption onset, which we interpret as a precursor event. Based on our measurements of ground deformation through the entire eruption cycle at Axial Seamount, we suggest that another eruption could occur as early as 2018. We propose that the long-term eruptive cycle of Axial Seamount could be more predictable compared with its subaerial counterparts because the volcano receives a relatively steady supply of magma through the Cobb hotspot and because it is located on thin oceanic crust at a spreading plate boundary.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Bathymetric map of the summit caldera of Axial Seamount.
Figure 2: BPR data from the 2011 eruption.
Figure 3: Two forecast scenarios for the next eruption at Axial Seamount, based on the cycle of inflation and deflation.

Similar content being viewed by others

References

  1. Johnson, H. P. & Embley, R. W. Axial Seamount: An active ridge axis volcano on the central Juan de Fuca Ridge. J. Geophys. Res. 95, 12689–12696 (1990).

    Article  Google Scholar 

  2. Chadwick, J. et al. Magmatic effects of the Cobb hotspot on the Juan de Fuca Ridge. J. Geophys. Res. 110, B03101 (2005).

    Article  Google Scholar 

  3. Embley, R. W., Chadwick, W. W. Jr, Clague, D. & Stakes, D. The 1998 eruption of Axial volcano: Multibeam anomalies and seafloor observations. Geophys. Res. Lett. 26, 3425–3428 (1999).

    Article  Google Scholar 

  4. Chadwick, W. W. Jr et al. Spotlight 1: Axial Seamount. Oceanography 23, 38–39 (2010).

    Article  Google Scholar 

  5. Chadwick, W. W. Jr, Nooner, S., Zumberge, M., Embley, R. W. & Fox, C. G. Vertical deformation monitoring at Axial Seamount since its 1998 eruption using deep-sea pressure sensors. J. Volcanol. Geotherm. Res. 150, 313–327 (2006).

    Article  Google Scholar 

  6. Nooner, S. L. & Chadwick, W. W. Jr Volcanic inflation measured in the caldera of Axial Seamount: Implications for magma supply and future eruptions. Geochem. Geophys. Geosyst. 10, Q02002 (2009).

    Article  Google Scholar 

  7. Caress, D. W. et al. High-resolution AUV surveys reveal new lava from the April 2011 eruption at Axial Seamount. Nature Geosci. (in the press).

  8. Dziak, R. P. et al. Seismic precursors and magma ascent before the April 2011 eruption at Axial Seamount. Nature Geosci. (in the press).

  9. Dvorak, J. J. & Dzurisin, D. Volcano geodesy: The search for magma reservoirs and the formation of eruptive vents. Rev. Geophys. 35, 343–384 (1997).

    Article  Google Scholar 

  10. Sturkell, E. et al. Volcano geodesy and magma dynamics in Iceland. J. Volcanol. Geotherm. Res. 150, 14–34 (2006).

    Article  Google Scholar 

  11. Fox, C. G. In situ ground deformation measurements from the summit of Axial volcano during the 1998 volcanic episode. Geophys. Res. Lett. 26, 3437–3440 (1999).

    Article  Google Scholar 

  12. Polster, A., Fabian, M. & Villinger, H. Effective resolution and drift of paroscientific pressure sensors derived from long-term seafloor measurements. Geochem. Geophys. Geosyst. 10, Q08008 (2009).

    Article  Google Scholar 

  13. West, M. E., Menke, W., Tolstoy, M., Webb, S. & Sohn, R. Magma storage beneath Axial volcano on the Juan de Fuca mid-ocean ridge. Nature 413, 833–836 (2001).

    Article  Google Scholar 

  14. Carbotte, S. M. et al. Variable crustal structure along the Juan de Fuca Ridge: Influence of on-axis hot spots and absolute plate motions. Geochem. Geophys. Geosyst. 9, Q08001 (2008).

    Google Scholar 

  15. Okada, Y. Internal deformation due to shear and tensile faults in a half-space. Bull. Seismol. Soc. Am. 82, 1018–1040 (1992).

    Google Scholar 

  16. Chadwick, W. W. Jr et al. The May 2005 eruption of Fernandina volcano, Galápagos: The first circumferential dike intrusion observed by GPS and InSAR. Bull. Volcanol. 73, 679–697 (2011).

    Article  Google Scholar 

  17. Dziak, R. P. & Fox, C. G. The January 1998 earthquake swarm at Axial volcano, Juan de Fuca Ridge: Hydroacoustic evidence of seafloor volcanic activity. Geophys. Res. Lett. 26, 3429–3432 (1999).

    Article  Google Scholar 

  18. Dvorak, J. J. & Okamura, A. T. A hydraulic model to explain variations in summit tilt rate at Kilauea and Mauna Loa volcanoes. US Geol. Surv. Prof. Pap. 1350, 1281–1296 (1987).

    Google Scholar 

  19. Mogi, K. Relations between the eruptions of various volcanoes and the deformation of the ground surfaces around them. Bull. Earthq. Res. I. Tokyo 36, 99–134 (1958).

    Google Scholar 

  20. Chadwick, W. W. Jr, Embley, R. W., Milburn, H. B., Meinig, C. & Stapp, M. Evidence for deformation associated with the 1998 eruption of Axial Volcano, Juan de Fuca Ridge, from acoustic extensometer measurements. Geophys. Res. Lett. 26, 3441–3444 (1999).

    Article  Google Scholar 

  21. Fox, C. G., Chadwick, W. W. Jr & Embley, R. W. Direct observation of a submarine volcanic eruption from a sea-floor instrument caught in a lava flow. Nature 412, 727–729 (2001).

    Article  Google Scholar 

  22. Jaupart, C. & Vergniolle, S. The generation and collapse of a foam layer at the roof of a basaltic magma chamber. J. Fluid Mech. 203, 347–380 (1989).

    Article  Google Scholar 

  23. Tait, S., Jaupart, C. & Vergniolle, S. Pressure, gas content, and eruption periodicity of a shallow crystallising magma chamber. Earth Planet. Sci. Lett. 92, 107–123 (1989).

    Article  Google Scholar 

  24. Helo, C., Longpre, M. A., Shimizu, N., Clague, D. A. & Stix, J. Explosive eruptions at mid-ocean ridges driven by CO2-rich magmas. Nature Geosci. 4, 260–263 (2011).

    Article  Google Scholar 

  25. http://www.ooi.washington.edu/.

  26. Agnew, D. NLOADF: A program for computing ocean-tide loading. J. Geophys. Res. 102, 5109–5110 (1997).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grant OCE-0725605 from the National Science Foundation, the National Oceanic and Atmospheric Administration Vents Program and the National Oceanic and Atmospheric Administration Undersea Research Program, with support from the Pacific Marine Environmental Laboratory’s Engineering Development Division. Outstanding logistical support for this work was provided by M. Fowler, A. Lau, S. Merle and the crews of RV Atlantis, RV Thompson and ROVs Jason and ROPOS. S. Jónsson wrote the deformation modelling software that we used. Pacific Marine Environmental Laboratory contribution number 3782.

Author information

Authors and Affiliations

Authors

Contributions

W.W.C. and S.L.N. contributed equally to this work. W.W.C. wrote the manuscript. D.A.B. and M.D.L. were co-principal investigators on the expedition that discovered the 2011 eruption at Axial Seamount.

Corresponding author

Correspondence to William W. Chadwick Jr.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chadwick, W., Nooner, S., Butterfield, D. et al. Seafloor deformation and forecasts of the April 2011 eruption at Axial Seamount. Nature Geosci 5, 474–477 (2012). https://doi.org/10.1038/ngeo1464

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo1464

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing