The timing and pattern of biotic recovery following the end-Permian mass extinction

Journal name:
Nature Geoscience
Volume:
5,
Pages:
375–383
Year published:
DOI:
doi:10.1038/ngeo1475
Published online

Abstract

The aftermath of the great end-Permian period mass extinction 252 Myr ago shows how life can recover from the loss of >90% species globally. The crisis was triggered by a number of physical environmental shocks (global warming, acid rain, ocean acidification and ocean anoxia), and some of these were repeated over the next 5–6 Myr. Ammonoids and some other groups diversified rapidly, within 1–3 Myr, but extinctions continued through the Early Triassic period. Triassic ecosystems were rebuilt stepwise from low to high trophic levels through the Early to Middle Triassic, and a stable, complex ecosystem did not re-emerge until the beginning of the Middle Triassic, 8–9 Myr after the crisis. A positive aspect of the recovery was the emergence of entirely new groups, such as marine reptiles and decapod crustaceans, as well as new tetrapods on land, including — eventually — dinosaurs. The stepwise recovery of life in the Triassic could have been delayed either by biotic drivers (complex multispecies interactions) or physical perturbations, or a combination of both. This is an example of the wider debate about the relative roles of intrinsic and extrinsic drivers of large-scale evolution.

At a glance

Figures

  1. Environmental changes and biodiversity variations from the latest Permian to Middle Triassic.
    Figure 1: Environmental changes and biodiversity variations from the latest Permian to Middle Triassic.

    Arrows indicated on the conodont and ophiuroid range bars show increasing data into the Middle Triassic; detailed data on genus diversity and principal authors are listed in Supplementary Table S1. The timescale was based on new radiometric dates outlined in Supplementary Information S2. Carbon isotope fluctuations, Siberian Traps large igneous province (STLIP) eruption, anoxia ranges, trace fossil data, and reef, reef builder, chert and coal gap data from references in Supplementary Information. Ae., Aegean; Bith., Bithynian; Di., Dienerian; Gr., Griesbachian; Illy., Illyrian; Sm., Smithian; Vol., volcanism.

  2. Outline trophic pyramid of a fossilized marine ecosystem in the Permian or Triassic.
    Figure 2: Outline trophic pyramid of a fossilized marine ecosystem in the Permian or Triassic.

    From the bottom, the trophic levels are: primary producers (PP), mainly microbes; primary consumers (PC), such as foraminifers; meso-consumers (MC1), such as endo-faunal trace-markers; meso-consumers (MC2), such as benthos; reef-building meso-consumers (Rb); predatory invertebrates (P1), such as gastropods; and predatory fishes and reptiles (P2).

  3. Reconstructed marine ecosystems before and after the end-Permian mass extinction in south China.
    Figure 3: Reconstructed marine ecosystems before and after the end-Permian mass extinction in south China.

    a, Pre-extinction marine benthic ecosystem in the latest Permian; low abundance, high diversity and dominated by brachiopods, corals, crinoids and fusulinid foraminifers. Scale bar, 10 cm. b, Microbe-dominated ecosystem immediately after the EPME in early Griesbachian (early Induan); primary producers dominate. Scale bar, 10 cm. c, Opportunist-dominated ecosystem in Griesbachian–Dienerian (Induan); high abundance, low diversity and dominated by disaster taxa (for example, the bivalve Claraia). Scale bar, 5 cm. d, Tracemaker-dominated ecosystem in Spathian (late Olenekian), indicating recovery of tracemakers. Scale bar, 6 cm. e, Mid Anisian (Middle Triassic) benthic ecosystem; low abundance, high diversity and dominated by brachiopods and crinoids. Scale bar, 8 cm. f, Mid–late Anisian ecosystem; dominated by marine fishes and reptiles, marking the rebuilding of top-predator trophic structure. Scale bar, 10 cm. Drawings © John Sibbick.

  4. Stepwise rebuilding pattern of marine ecosystems from low to top trophic levels in the aftermath of the EPME.
    Figure 4: Stepwise rebuilding pattern of marine ecosystems from low to top trophic levels in the aftermath of the EPME.

    Immediate post-extinction ecosystems in the Griesbachian–Dienerian show only the lowest trophic level. Further levels are added from Smithian to Anisian, with the topmost level, of reptiles and large fishes that fed on other vertebrates, fully achieved only by the mid–late Anisian, 8–9 Myr after the mass extinction event.

References

  1. Sepkoski, J. J., Jr A kinetic model of Phanerozoic taxonomic diversity, III: Post-Paleozoic families and mass extinctions. Paleobiology 10, 246267 (1984).
  2. Benton, M. J. Diversification and extinction in the history of life. Science 268, 5258 (1995).
  3. Alroy, J. et al. Phanerozoic trends in the global diversity of marine invertebrates. Science 321, 97100 (2008).
  4. Van Valen, L. A resetting of Phanerozoic community evolution. Nature 307, 5052 (1984).
  5. Bowring, S. A. et al. U/Pb zircon geochronology and tempo of the end-Permian mass extinction. Science 280, 10391045 (1998).
  6. Benton, M. J. The origins of modern biodiversity on land. Phil. Trans. R. Soc. B 365, 36673679 (2010).
  7. Knoll, A. H., Bambach, R. K., Payne, J. L., Pruss, S. & Fischer, W. W. Paleophysiology and the end-Permian mass extinction. Earth Planet. Sci. Lett. 256, 295313 (2007).
  8. Erwin, D. H. Lessons from the past: biotic recoveries from mass extinctions. Proc. Natl Acad. Sci. USA 98, 53995403 (2001).
  9. Erwin, D. H. Disparity: morphological pattern and developmental context. Palaeontology 50, 5773 (2007).
  10. Benton, M. J. & Twitchett, R. J. How to kill (almost) all life: the end-Permian extinction event. Trends Ecol. Evol. 18, 358365 (2003).
  11. Benton, M. J., Tverdokhlebov, V. P. & Surkov, M. V. Ecosystem remodelling among vertebrates at the Permian-Triassic boundary in Russia. Nature 432, 97100 (2004).
  12. Brayard, A. et al. Good genes and good luck: Ammonoid diversity and the end-Permian mass extinction. Science 325, 11181121 (2009).
  13. Stanley, S. M. Relation of Phanerozoic stable isotope excursions to climate, bacterial metabolism, and major extinctions. Proc. Natl Acad. Sci. USA 107, 1918519189 (2010).
  14. Song, H. J. et al. Recovery tempo and pattern of marine ecosystems after the end-Permian mass extinction. Geology 39, 739742 (2011).
  15. Hallam, A. Why was there a delayed radiation after the end-Palaeozoic extinctions? Historical Biology 5, 257262 (1991).
  16. Sahney, S. & Benton, M. J. Recovery from the most profound mass extinction of all time. Proc. R. Soc. B-Biol. Sci. 275, 759765 (2008).
  17. Chen, Z. Q., Tong, J., Liao, Z. T. & Song, H. Structural changes of marine communities over the Permian-Triassic transition: Ecologically assessing the end-Permian mass extinction and its aftermath. Global Planet. Change 73, 123140 (2010).
  18. Erwin, D. H. A preliminary classification of evolutionary radiations. Historical Biology 6, 133147 (1992).
  19. Payne, J. L. et al. Large perturbations of the carbon cycle during recovery from the end-Permian extinction. Science 305, 506509 (2004).
  20. Payne, J. L. et al. Early and Middle Triassic trends in diversity, evenness, and size of foraminifers on a carbonate platform in south China: implications for tempo and mode of biotic recovery from the end-Permian mass extinction. Paleobiology 37, 409425 (2011).
  21. Irmis, R. B. & Whiteside, J. H. Delayed recovery of non-marine tetrapods after the end-Permian mass extinction tracks global carbon cycle. Proc. R. Soc. B-Biol. Sci. http://dx.doi.org/10.1098/rspb.2011.1895 (2011).
  22. Stanley, S. M. An analysis of the history of marine animal diversity. Paleobiology 33, 155 (2007).
  23. Solé, R. V., Saldana, J., Montoya, J. M. & Erwin, D. H. Simple model of recovery dynamics after mass extinction. J. Theor. Biol. 267, 193200 (2010).
  24. Raup, D. M. Biases in the fossil record of species and genera. Bull. Carnegie Museum Nat. Hist. 13, 8591 (1979).
  25. Knoll, A., Bambach, R., Canfield, D. & Grotzinger, J. Comparative earth history and Late Permian mass extinction. Science 273, 452457 (1996).
  26. McGhee, G. R., Sheehan, P. M., Bottjer, D. J. & Droser, M. L. Ecological ranking of Phanerozoic biodiversity crises: ecological and taxonomic severities are decoupled. Palaeogeogr. Palaeoclimatol. Palaeoecol. 211, 289297 (2004).
  27. Butchart, S. H. M. et al. National indicators show biodiversity progress response. Science 329, 900901 (2010).
  28. Barnosky, A. et al. Has the Earth's sixth mass extinction already arrived? Nature 471, 5157 (2011).
  29. McKinney, M. Extinction selectivity among lower taxa - gradational patterns and rarefaction error in extinction estimates. Paleobiology 21, 300313 (1995).
  30. Jablonski, D., Erwin, D. H. & Lipps, J. H. Evolutionary Paleobiology (Chicago Univ. Press, 1996).
  31. Jin, Y., Wang, Y., Wang, W., Shang, Q. & Erwin, D. Pattern of marine mass extinction near the Permian-Triassic boundary in South China. Science 289, 432436 (2000).
  32. Xie, S. C., Pancost, R. D., Yin, H. F., Wang, H. M. & Evershed, R. P. Two episodes of microbial change coupled with Permo/Triassic faunal mass extinction. Nature 434, 494497 (2005).
  33. Yin, H. F. et al. The prelude of the end-Permian mass extinction predates a postulated bolide impact. Int. J. Earth Sci. 96, 903909 (2007).
  34. Chen, Z. Q. et al. Environmental and biotic turnover across the Permian-Triassic boundary on a shallow carbonate platform in western Zhejiang, South China. Aust. J. Earth Sci. 56, 775797 (2009).
  35. Shen, S.-Z. et al. Calibrating the end-Permian mass extinction. Science 334, 13671372 (2011).
  36. Payne, J. L. & Kump, L. Evidence for recurrent Early Triassic massive volcanism from quantitative interpretation of carbon isotope fluctuations. Earth Planet. Sci. Lett. 256, 264277 (2007).
  37. Wignall, P. B. Large igneous provinces and mass extinctions. Earth Sci. Rev. 53, 133 (2001).
  38. Benton, M. J. When Life Nearly Died: The Greatest Mass Extinction of All Time (Thames & Hudson, 2003).
  39. Newell, A. J., Tverdokhlebov, V. P. & Benton, M. J. Interplay of tectonics and climate on a transverse fluvial system, Upper Permian, Southern Uralian Foreland Basin, Russia. Sedim. Geol. 127, 1129 (1999).
  40. Ward, P. D., Montgomery, D. R. & Smith, R. M. H. Altered river morphology in South Africa related to the Permian-Triassic extinction. Science 289, 17411743 (2000).
  41. Retallack, G. J. Postapocalyptic greenhouse paleoclimate revealed by earliest Triassic paleosols in the Sydney Basin, Australia. Geol. Soc. Am. Bull. 111, 5270 (1999).
  42. Algeo, T. J. & Twitchett, R. Anomalous Early Triassic sediment fluxes due to elevated weathering rates and their biological consequences. Geology 38, 10231026 (2010).
  43. Algeo, T. J., Chen, Z. Q., Fraiser, M. L. & Twitchett, R. J. Terrestrial-marine teleconnections in the collapse and rebuilding of Early Triassic marine ecosystems. Palaeogeogr. Palaeoclimatol. Palaeoecol. 308, 111 (2011).
  44. Wang, C. & Visscher, H. Abundance anomalies of aromatic biomarkers in the Permian-Triassic boundary section at Meishan, China - Evidence of end-Permian terrestrial ecosystem collapse. Palaeogeogr. Palaeoclimatol. Palaeoecol. 252, 291303 (2007).
  45. Wignall, P. B. & Twitchett, R. J. Oceanic anoxia and the end Permian mass extinction. Science 272, 11551158 (1996).
  46. Yin, H. F., Zhang, K., Tong, J., Yang, Z. Y. & Wu, S. The Global Stratotype Section and Point (GSSP) of the Permian-Triassic boundary. Episodes 24, 102114 (2001).
  47. Taylor, G. K. et al. Magnetostratigraphy of Permian/Triassic boundary sequences in the Cis-Urals, Russia: No evidence for a major temporal hiatus. Earth Planet. Sci. Lett. 281, 3647 (2009).
  48. Mundil, R., Pálfy, J., Renne, P. & Brack, P. in The Triassic Timescale Geological Society Special Publication No. 334 (ed Lucas, S. G.) 4160 (Geological Society of London, 2010).
  49. Huang, C., Tong, J., Hinnov, L. & Chen, Z. Did the great dying of life take 700 k.y.? Evidence from global astronomical correlation of the Permian-Triassic boundary interval. Geology 39, 779782 (2011).
  50. Retallack, G. J., Veevers, J. & Morante, R. Global coal gap between Permian-Triassic extinction and Middle Triassic recovery of peat-forming plants. Geol. Soc. Am. Bull. 108, 195207 (1996).
  51. Retallack, G. J. et al. Multiple Early Triassic greenhouse crises impeded recovery from Late Permian mass extinction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 308, 233251 (2011).
  52. Rees, P. Land-plant diversity and the end-Permian mass extinction. Geology 30, 827830 (2002).
  53. Riccardi, A., Arthur, M. A. & Kump, L. R. Sulfur isotopic evidence for chemocline upward excursions during the end-Permian mass extinction. Geochim. Cosmochim. Acta 70, 57405752 (2006).
  54. Kump, L. R., Pavlov, A. & Arthur, M. A. Massive release of hydrogen sulfide to the surface ocean and atmosphere during intervals of oceanic anoxia. Geology 33, 397400 (2005).
  55. Algeo, T. J., Lehrmann, D., Orchard, M. & Tong, J. The Permian-Triassic boundary crisis and Early Triassic biotic recovery. Palaeogeogr. Palaeoclimatol. Palaeoecol. 252, 13 (2007).
  56. Orchard, M. Conodont diversity and evolution through the latest Permian and Early Triassic upheavals. Palaeogeogr. Palaeoclimatol. Palaeoecol. 252, 93117 (2007).
  57. Stanley, S. M. Evidence from ammonoids and conodonts for multiple Early Triassic mass extinctions. Proc. Natl Acad. Sci. USA 106, 1526415267 (2009).
  58. Twitchett, R. J., Krystyn, L., Baud, A., Wheeley, J. & Richoz, S. Rapid marine recovery after the end-Permian mass-extinction event in the absence of marine anoxia. Geology 32, 805808 (2004).
  59. Beatty, T., Zonneveld, J. & Henderson, C. Anomalously diverse Early Triassic ichnofossil assemblages in Northwest Pangea: A case for a shallow-marine habitable zone. Geology 36, 771774 (2008).
  60. Hofmann, R., Goudemand, N., Wasmer, M., Bucher, H. & Hautmann, M. New trace fossil evidence for an early recovery signal in the aftermath of the end-Permian mass extinction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 310, 216226 (2011).
  61. Brayard, A. et al. Gastropod evidence against the Early Triassic Lilliput effect. Geology 38, 147150 (2010).
  62. Galfetti, T. et al. Smithian–Spathian boundary event: Evidence for global climatic change in the wake of the end-Permian biotic crisis. Geology 35, 291294 (2007).
  63. Hermann, E. et al. Organic matter and palaeoenvironmental signals during the Early Triassic biotic recovery: The Salt Range and Surghar Range records. Sedim. Geol. 234, 1941 (2011).
  64. Grauvogel-Stamm, L. & Ash, S. Recovery of the Triassic land flora from the end-Permian life crisis. C.R. Palevol 4, 593608 (2005).
  65. Brusatte, S. L. et al. The origin and early radiation of dinosaurs. Earth Sci. Rev. 101, 68100 (2010).
  66. Nesbitt, S. J. et al. Ecologically distinct dinosaurian sister group shows early diversification of Ornithodira. Nature 464, 9598 (2010).
  67. Twitchett, R. J. Palaeoenvironments and faunal recovery after the end-Permian mass extinction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 154, 2737 (1999).
  68. Pruss, S. B. & Bottjer, D. J. Early Triassic trace fossils of the western United States and their implications for prolonged environmental stress from the end-Permian mass extinction. Palaios 19, 551564 (2004).
  69. Zonneveld, J. P., Gingras, M. K. & Beatty, T. W. Diverse ichnofossil assemblages following the P-T mass extinction, Lower Triassic, Alberta and British Columbia, Canada: evidence for shallow marine refugia on the northwestern coast of Pangaea. Palaios 25, 368392 (2010).
  70. Knaust, D. The end-Permian mass extinction and its aftermath on an equatorial carbonate platform: insights from ichnology. Terra Nova 22, 195202 (2010).
  71. Twitchett, R. J. & Wignall, P. B. Trace fossils and the aftermath of the Permo-Triassic mass extinction: Evidence from northern Italy. Palaeogeogr. Palaeoclimatol. Palaeoecol. 124, 137151 (1996).
  72. Fraiser, M. L. & Bottjer, D. J. Opportunistic behaviour of invertebrate marine tracemakers during the Early Triassic aftermath of the end-Permian mass extinction. Aust. J. Earth Sci. 56, 841857 (2009).
  73. Chen, Z. Q., Tong, J. & Fraiser, M. Trace fossil evidence for restoration of marine ecosystems following the end-Permian mass extinction in the Lower Yangtze region, South China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 299, 449474 (2011).
  74. Hautmann, M. et al. An unusually diverse mollusc fauna from the earliest Triassic of South China and its implications for benthic recovery after the end-Permian biotic crisis. Geobios 44, 7185 (2007).
  75. Hallam, A. & Wignall, P. B. Mass Extinctions and Their Aftermath (Oxford Univ. Press, 1997).
  76. Fraiser, M. L. & Bottjer, D. J. Restructuring in benthic level-bottom shallow marine communities due to prolonged environmental stress following the end-Permian mass extinction. C.R. Palevol 4, 583591 (2005).
  77. Twitchett, R. J. The Lilliput effect in the aftermath of the end-Permian extinction event. Palaeogeogr. Palaeoclimatol. Palaeoecol. 252, 132144 (2007).
  78. Fraiser, M. L., Twitchett, R. J., Frederickson, J., Metcalfe, B. & Bottjer, D. Gastropod evidence against the Early Triassic Lilliput effect: comment. Geology 39, E232E232 (2011).
  79. Whiteside, J. H. & Ward, P. D. Ammonoid diversity and disparity track episodes of chaotic carbon cycling during the early Mesozoic. Geology 39, 99102 (2011).
  80. Brayard, A. et al. Transient metazoan reefs in the aftermath of the end-Permian mass extinction. Nature Geosci. 4, 693697 (2011).
  81. Botha, J. & Smith, R. M. H. Rapid vertebrate recuperation in the Karoo Basin of South Africa following the End-Permian extinction. J. Afr. Earth Sci. 45, 502514 (2006).
  82. Benton, M. J. Dinosaur success in the Triassic: a noncompetitive ecological model. Q. Rev. Biol. 58, 2955 (1983).
  83. Wignall, P. B. & Benton, M. J. Lazarus taxa and fossil abundance at times of biotic crisis. J. Geol. Soc. 156, 453456 (1999).
  84. Chen, Z. Q., Kaiho, K. & George, A. Survival strategies of brachiopod faunas from the end-Permian mass extinction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 224, 232269 (2005).
  85. Chen, Z. Q., Kaiho, K. & George, A. Early Triassic recovery of the brachiopod faunas from the end-Permian mass extinction: A global review. Palaeogeogr. Palaeoclimatol. Palaeoecol. 224, 270290 (2005).
  86. Flügel, E. in Phanerozoic Reef Patterns Vol. 72 (eds Kiessling, W., Flügel, E. & Golonka, J.) 391463 (SEPM Special Publication, 2002).
  87. Vishnevskaya, V. & Kostyuchenko, A. The evolution of radiolarian biodiversity. Paleontol. J. 34, 124130 (2000).
  88. O'Dogherty, L., Carter, E., Goričan, Š. & Dumitrica, P. in The Triassic Timescale Geological Society Special Publications 334 (eds SG Lucas) 163200 (Geological Society of London, 2010).
  89. Twitchett, R. J., Feinberg, J., O'Connor, D., Alvarez, W. & McCollum, L. Early Triassic ophiuroids: Their paleoecology, taphonomy, and distribution. Palaios 20, 213223 (2005).
  90. Chen, Z. Q. & McNamara, K. End-Permian extinction and subsequent recovery of the Ophiuroidea (Echinodermata). Palaeogeogr. Palaeoclimatol. Palaeoecol. 236, 321344 (2006).
  91. McGowan, A. J. Ammonoid taxonomic and morphologic recovery patterns after the Permian-Triassic. Geology 32, 665668 (2004).
  92. Brusatte, S. L., Benton, M. J., Ruta, M. & Lloyd, G. T. Superiority, competition, and opportunism in the evolutionary radiation of dinosaurs. Science 321, 14851488 (2008).
  93. Brusatte, S. L., Benton, M. J., Lloyd, G., Ruta, M. & Wang, S. J. Macroevolutionary patterns in the evolutionary radiation of archosaurs (Tetrapoda: Diapsida). Earth Env. Sci. Trans. R. Soc. 101, 367382 (2011).
  94. Ruta, M. & Benton, M. J. Calibrated diversity, tree topology and the mother of all mass extinctions: the lesson of the temnospondyls. Palaeontology 51, 12611288 (2008).
  95. Solé, R. V., Montoya, J. M. & Erwin, D. H. Recovery after mass extinction: evolutionary assembly in large-scale biosphere dynamics. Phil. Trans. R. Soc. B-Biol. Sci. 357, 697707 (2002).
  96. Hu, S.-x. et al. The Luoping biota: exceptional preservation, and new evidence on the Triassic recovery from end-Permian mass extinction. Proc. R. Soc. B-Biol. Sci. 278, 22742282 (2011).
  97. Meyer, K. M. et al. δ13C evidence that high primary productivity delayed recovery from end-Permian mass extinction. Earth Planet. Sci. Lett. 302, 378384 (2011).
  98. Benton, M. J. The Red Queen and the Court Jester: Species diversity and the role of biotic and abiotic factors through time. Science 323, 728732 (2009).
  99. Carr, T. R. & Kitchell, J. A. Dynamics of taxonomic diversity. Paleobiology 6, 427443 (1980).
  100. Gavrilets, S. & Losos, J. Adaptive radiation: contrasting theory with data. Science 323, 732737 (2009).

Download references

Author information

Affiliations

  1. State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China

    • Zhong-Qiang Chen
  2. School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, UK

    • Michael J. Benton

Competing financial interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to:

Author details

Supplementary information

PDF files

  1. Supplementary information (291K)

    Timing and pattern of biotic recovery following the end-Permian mass extinction

Additional data