Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Initiation of the western branch of the East African Rift coeval with the eastern branch

Abstract

The East African Rift System transects the anomalously high-elevation Ethiopian and East African plateaux that together form part of the 6,000-km-long African superswell structure. Rifting putatively developed as a result of mantle plume activity that initiated under eastern Africa. The mantle activity has caused topographic uplift that has been connected to African Cenozoic climate change and faunal evolution. The rift is traditionally interpreted to be composed of two distinct segments: an older, volcanically active eastern branch and a younger, less volcanic western branch. Here, we show that initiation of rifting in the western branch began more than 14 million years earlier than previously thought, contemporaneously with the eastern branch. We use a combination of detrital zircon geochronology, tephro- and magnetostratigraphy, along with analyses of past river flow recorded in sedimentary rocks from the Rukwa Rift Basin, Tanzania, to constrain the timing of rifting, magmatism and drainage development in this part of the western branch. We find that rift-related volcanism and lake development had begun by about 25 million years ago. These events were preceded by pediment development and a fluvial drainage reversal that we suggest records the onset of topographic uplift caused by the African superswell. We conclude that uplift of eastern Africa was more widespread and synchronous than previously recognized.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: East African Rift System (EARS).
Figure 2: Palaeogene stratigraphy of fluviolacustrine deposits in the RRB.
Figure 3: Detrital zircon provenance of the RRB and unroofing history of the western branch.
Figure 4: Post-Gondwanan drainage evolution model for central–east Africa.

Similar content being viewed by others

References

  1. Pik, R. East Africa on the rise. Nature Geosci. 4, 660–661 (2011).

    Article  Google Scholar 

  2. Moucha, R. & Forte, A. M. Changes in African topography driven by mantle convection. Nature Geosci. 4, 707–712 (2011).

    Article  Google Scholar 

  3. Nyblade, A. in Volcanism and the Evolution of the African Lithosphere (eds Beccaluva, L., Bianchini, G. & Wilson, M.) 37–50 (Geological Society of America Special Paper Vol. 478, 2011).

    Book  Google Scholar 

  4. Nyblade, A. & Robinson, S. The African superswell. Geophys. Res. Lett. 21, 765–768 (1994).

    Article  Google Scholar 

  5. Burke, K. The African plate. S. Afr. J. Geol. 99, 339–409 (1996).

    Google Scholar 

  6. Ebinger, C. J. & Sleep, N. Cenozoic magmatism throughout East Africa resulting from impact of a single plume. Nature 395, 788–791 (1998).

    Article  Google Scholar 

  7. Sepulchre, P. et al. Tectonic uplift and eastern Africa aridification. Science 313, 1419–1423 (2006).

    Article  Google Scholar 

  8. Spiegel, C., Kohn, B. P., Belton, D. X. & Gleadow, A. J. W. Morphotectonic evolution of the central Kenya rift flanks: Implications for late Cenozoic environmental change in East Africa. Geology 35, 427–430 (2007).

    Article  Google Scholar 

  9. Pik, R, Marty, B., Carignan, J., Yirgu, G. & Ayalew, T. Timing of East African Rift development in southern Ethiopia: Implication for mantle plume activity and evolution of topography. Geology 36, 167–170 (2008).

    Article  Google Scholar 

  10. Ebinger, C. J. Tectonic development of the western branch of the East African rift system. Geol. Soc. Am. Bull. 101, 885–903 (1989).

    Article  Google Scholar 

  11. Flowers, R. & Schoene, B. (U–Th)/He thermochronometry constraints on unroofing of the eastern Kaapvaal craton and significance for uplift of the southern African Plateau. Geology 38, 827–830 (2010).

    Article  Google Scholar 

  12. Burke, K. The Chad Basin: An active intra-continental basin. Tectonophysics 36, 197–206 (1976).

    Article  Google Scholar 

  13. Goudie, A. S. The drainage of Africa since the Cretaceous. Geomorphology 67, 437–456 (2005).

    Article  Google Scholar 

  14. Pik, R., Marty, B., Carignan, J. & Lavé, J. Stability of the upper Nile drainage network (Ethiopia) deduced from (U–Th)/He thermochronometry: Implications for uplift and erosion of the Afar plume dome. Earth Planet. Sci. Lett. 215, 73–88 (2003).

    Article  Google Scholar 

  15. Stankiewicz, J. & de Wit, M. J. A proposed drainage evolution model for central Africa—did the Congo flow east? J. Afr. Earth Sci. 44, 75–84 (2006).

    Article  Google Scholar 

  16. Gani, N. D. S., Gani, M. R. & Abdelsalam, M. G. Blue Nile incision on the Ethiopian Plateau: Pulsed plateau growth, Pliocene uplift and hominin evolution. GSA Today 17, 4–11 (2007).

    Article  Google Scholar 

  17. Furman, T., Kaleta, K. M., Bryce, J. G. & Hanan, B. B. Tertiary mafic lavas of Turkana, Kenya: Constraints on East African plume structure and the occurrence of high-μ volcanism in Africa. J. Petrol. 47, 1221–1244 (2006).

    Article  Google Scholar 

  18. Ebinger, C. J., Yemane, T., Woldegabriel, G., Aronson, J. L. & Walter, R. C. Late Eocene–Recent volcanism and faulting in the southern main Ethiopian Rift. J. Geol. Soc. Lond. 150, 99–108 (1993).

    Article  Google Scholar 

  19. McDougall, I. & Brown, F. H. Timing of volcanism and evolution of the northern Kenya Rift. Geol. Mag. 146, 34–47 (2009).

    Article  Google Scholar 

  20. Ayalew, D. et al. Source, genesis, and timing of giant ignimbrite deposits associated with Ethiopian continental flood basalts. Geochem. Cosmochim. Acta 66, 1429–1448 (2002).

    Article  Google Scholar 

  21. George, R., Rogers, N. & Kelley, S. Earliest magmatism in Ethiopia: Evidence for two mantle plumes in one flood basalt province. Geology 26, 923–926 (1989).

    Article  Google Scholar 

  22. Foster, A., Ebinger, C., Mbede, E. & Rex, D. Tectonic development of the northern Tanzanian sector of the East African Rift System. J. Geol. Soc. Lond. 154, 689–700 (1997).

    Article  Google Scholar 

  23. Ebinger, C., Deino, A., Drake, R. & Tesha, A. Chronology of volcanism and rift basin propagation: Rungwe Volcanic Province, East Africa. J. Geophys. Res. 94, 15785–15803 (1989).

    Article  Google Scholar 

  24. Morley, C. K. et al. Tectonic evolution of the northern Kenyan Rift. J. Geol. Soc. Lond. 149, 333–348 (1992).

    Article  Google Scholar 

  25. Ebinger, C. J. et al. Rift deflection, migration, and propagation: Linkage of the Ethiopian and Eastern rifts, Africa. Geol. Soc. Am. Bull. 112, 163–176 (2000).

    Article  Google Scholar 

  26. Chorowicz, J. The East African Rift System. J. Afr. Earth Sci. 43, 379–410 (2005).

    Article  Google Scholar 

  27. Wolfeden, E., Ebinger, C., Yirgu, G., Deino, A. & Ayalew, D. Evolution of the northern Main Ethiopian Rift: Birth of a triple junction. Earth Planet. Sci. Lett. 224, 213–228 (2004).

    Article  Google Scholar 

  28. Cohen, A. S., Soreghan, M. J. & Scholz, C. A. Estimating the age of formation of lakes: An example from Lake Tanganyika, East African Rift System. Geology 21, 511–514 (1993).

    Article  Google Scholar 

  29. Tiercelin, J. J. & Lezzar, K. E. in The East African Great Lakes: Limnology, Palaeolimnology and Biodiversity (eds Odada, E. O. & Olago, D. O.) 3–60 (Kluwer Academic, 2002).

    Book  Google Scholar 

  30. Kilembe, E. A. & Rosendahl, B. R. Structure and stratigraphy of the Rukwa Rift. Tectonophysics 209, 143–158 (1992).

    Article  Google Scholar 

  31. Wescott, W. A., Krebs, W. N., Engelhardt, D. W. & Cunningham, S. W. New biostratigraphic age dates from the Lake Rukwa Rift Basin in western Tanzania. Am. Assoc. Pet. Geol. Bull. 75, 1255–1263 (1991).

    Google Scholar 

  32. Morley, C. K., Cunningham, S. M., Harper, R. M. & Westcott, W. A. in Geoscience of Rift Systems—Evolution of East Africa (ed. Morley, C. K.) 91–110 (Studies in Geology 44, American Association of Petroleum Geologists, 1999).

    Google Scholar 

  33. Delvaux, D. in The Karoo to Recent Rifting in the Western Branch of the East-African Rift System: A Bibliographical Synthesis 63–83 (Royal Museum of Central Africa, Belgium, 1991).

    Google Scholar 

  34. Nyblade, A. A. & Brazier, R. A. Precambrian lithospheric controls on the development of the East African Rift System. Geology 30, 755–758 (2002).

    Article  Google Scholar 

  35. Tiercelin, J. J. et al. East African Rift System: offset, age and tectonic significance of the Tanganyika–Rukwa–Malawi intracontinental transcurrent fault zone. Tectonophysics 148, 241–252 (1988).

    Article  Google Scholar 

  36. Batumike, J. M. et al. LAM-ICPMS U-Pb dating of kimberlitic perovskite: Eocene–Oligocene kimberlites from the Kundelungu Plateau, D.R. Congo. Earth Planet. Sci. Lett. 267, 609–619 (2008).

    Article  Google Scholar 

  37. Bauer, F. U., Glasmacher, U. A., Ring, U., Schumann, A. & Nagudi, B. Thermal and exhumation history of the central Rwenzori Mountains, Western Rift of the East African Rift System, Uganda. Int. J. Earth Sci. 99, 1575–1597 (2010).

    Article  Google Scholar 

  38. Van der Beek, P., Mbede, E., Andriessen, P. & Delvaux, D. Denudation history of the Malawi and Rukwa rift flanks (East African Rift System) from fission track thermochronology. J. Afr. Earth Sci. 26, 363–385 (1998).

    Article  Google Scholar 

  39. Belton, D. X. The Low Temperature Chronology of Cratonic Terrains PhD thesis, Univ. Melbourne (2006).

  40. Stevens, N. J., O’Connor, P. M., Gottfried, M. D., Roberts, E. M. & Ngasala, S. An anthropoid primate from the Paleogene of southwestern Tanzania. J. Vert. Paleontol. 25, 986–989 (2005).

    Article  Google Scholar 

  41. Stevens, N. J. et al. in Elwyn Simmons: A Search for Origins. Developments in Primatology: Progress and Prospects (eds Fleagle, J. G. & Gilbert, C. C.) 159–180 (Springer, 2008).

    Google Scholar 

  42. Roberts, E. M. et al. Sedimentology and depositional environments of the Red Sandstone Group, Rukwa Rift Basin, southwestern Tanzania: New insight into Cretaceous and Paleogene terrestrial ecosystems and tectonics in sub-equatorial Africa. J. Afr. Earth Sci. 57, 179–212 (2010).

    Article  Google Scholar 

  43. O’Connor, P. M. et al. The evolution of mammal-like crocodyliforms in the cretaceous of Gondwana. Nature 466, 748–751 (2010).

    Article  Google Scholar 

  44. Cahen, L. Geologie du Congo Belge (Vaillant-Carmanne, 1954).

    Google Scholar 

  45. Sahagian, D. Epeirgeonic motions of Africa as inferred from Cretaceous shoreline deposits. Tectonics 7, 125–138 (1988).

    Article  Google Scholar 

  46. Rosenthal, A., Foley, S. F., Pearson, D. G., Nowell, G. M. & Tappe, S. Petrogenesis of strongly alkaline primitive rocks at the propagating tip of the western branch of the East African Rift. Earth Planet. Sci. Lett. 284, 236–248 (2009).

    Article  Google Scholar 

  47. Hilton, D. R. et al. Helium isotopes at Rungwe Volcanic Province, Tanzania and the origin of the East African Plateaux. Geophys. Res. Lett. 38, L21304 (2011).

    Article  Google Scholar 

  48. Hanson, R. E. in Proterozoic East Gondwana: Supercontinent Assembly and Breakup (eds Yoshida, M., Windley, B. F. & Dasgupta, S.) 427–463 (Geol. Soc. Lond., 2003).

    Google Scholar 

  49. De Waele, B., Kampunzu, A. B., Mapani, B. S. E. & Tembo, F. The Mesoproterozoic Irumide belt of Zambia. J. Afr. Earth Sci. 46, 36–70 (2006).

    Article  Google Scholar 

  50. Ogg, J. G. & Smith, A. G. in A Geologic Time Scale 2004 (eds Gradstein, F. M., Ogg, J. G. & Smith, A. G.) 63–86 (Cambridge Univ. Press, 2004).

    Google Scholar 

Download references

Acknowledgements

Financial support was provided by the National Science Foundation (EAR-0617561), L. S. B. Leakey Foundation, National Geographic Society (Committee for Research and Exploration), James Cook University, Ohio University and Michigan State University. We thank T. Blenkinsop for a constructive review; T. Hieronymus, Z. Jinnah, S. Ngasala, E. Johansen and J. Temba for field assistance; Y. Hu and K. Blake for technical support in the Advanced Analytical Centre; G. Messe and T. Barnum for help with palaeomagnetic measurements; the Tanzanian Commission for Science and Technology and the Tanzanian Antiquities Unit for logistical support.

Author information

Authors and Affiliations

Authors

Contributions

E.M.R., P.M.O., N.J.S. and M.D.G. developed the project and collected the field data. E.M.R., P.M.O., N.J.S., P.G.H.M., M.D.G. and W.C.C. developed the scientific concepts, interpreted the data and wrote the paper. R.A.A., A.I.S.K., S.H. and E.M.R. carried out the radio-isotopic dating. W.C.C. carried out palaeomagnetic analyses.

Corresponding author

Correspondence to E. M. Roberts.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 15042 kb)

Supplementary Information

Supplementary Information (XLS 33 kb)

Supplementary Information

Supplementary Information (XLSX 17 kb)

Supplementary Information

Supplementary Information (XLS 30 kb)

Supplementary Information

Supplementary Information (XLSX 17 kb)

Supplementary Information

Supplementary Information (XLSX 427 kb)

Supplementary Information

Supplementary Information (PDF 521 kb)

Supplementary Information

Supplementary Information (PDF 195 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roberts, E., Stevens, N., O’Connor, P. et al. Initiation of the western branch of the East African Rift coeval with the eastern branch. Nature Geosci 5, 289–294 (2012). https://doi.org/10.1038/ngeo1432

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo1432

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing