Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A mantle-driven surge in magma supply to Kīlauea Volcano during 2003–2007

Abstract

The eruptive activity of a volcano is fundamentally controlled by the rate of magma supply. At Kīlauea Volcano, Hawai‘i, the rate of magma rising from a source within Earth’s mantle, through the Hawaiian hotspot, was thought to have been relatively steady in recent decades. Here we show that the magma supply to Kīlauea at least doubled during 2003–2007, resulting in dramatic changes in eruptive activity and the formation of new eruptive vents. An initial indication of the surge in supply was an increase in CO2 emissions during 2003–2004, combined with the onset of inflation of Kīlauea’s summit, measured using the Global Positioning System and interferometric synthetic aperture radar. Inflation was not limited to the summit magma reservoirs, but was recorded as far as 50 km from the summit, implying the existence of a connected magma system over that distance. We also record increases in SO2 emissions, heightened seismicity, and compositional and temperature variations in erupted lavas. The increase in the volume of magma passing through and stored within Kīlauea, coupled with increased CO2 emissions, indicate a mantle source for the magma surge. We suggest that magma supply from the Hawaiian hotspot can vary over timescales of years, and that CO2 emissions could be a valuable aid for assessing variations in magma supply at Kīlauea and other volcanoes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Map of Kīlauea Volcano, Hawai‘i.
Figure 2: Geophysical and geochemical data from Kīlauea Volcano during 2000–2009.
Figure 3: Interferograms of Kīlauea’s summit area.
Figure 4: Vertical deformation at sites along Kīlauea’s ERZ.

Similar content being viewed by others

References

  1. Dvorak, J. J. & Dzurisin, D. Variations in magma supply rate at Kilauea Volcano, Hawai‘i. J. Geophys. Res. 98, 22,255–22,268 (1993).

    Article  Google Scholar 

  2. Bargar, K. E. & Jackson, E. D. Calculated volumes of individual shield volcanoes along the Hawaiian-Emperor chain. U.S. Geol. Surv. J. Res. 2, 545–550 (1974).

    Google Scholar 

  3. Bacon, C. R. Time-predictable bimodal volcanism in the Coso Range, California. Geology 10, 65–69 (1982).

    Article  Google Scholar 

  4. Lowenstern, J. B. & Hurwitz, S. Monitoring a supervolcano in repose: Heat and volatile flux at the Yellowstone caldera. Elements 4, 35–40 (2008).

    Article  Google Scholar 

  5. Allard, P., Behncke, B., D’Amico, S., Neri, M. & Gambino, S. Mount Etna 1993–2005: Anatomy of an evolving eruptive cycle. Earth Sci. Rev. 78, 85–114 (2006).

    Article  Google Scholar 

  6. Lu, Z., Dzurisin, D., Biggs, J., Wicks, C. Jr & McNutt, S. Ground surface deformation patterns, magma supply, and magma storage at Okmok volcano, Alaska, from InSAR analysis: 1. Intereruption deformation, 1997–2008. J. Geophys. Res. 115, B00B02 (2010).

    Google Scholar 

  7. Swanson, D. A. Magma supply rate at Kilauea volcano, 1952–1971. Science 175, 169–170 (1972).

    Article  Google Scholar 

  8. Tilling, R. I. & Dvorak, J. J. Anatomy of a basaltic volcano. Nature 363, 125–133 (1993).

    Article  Google Scholar 

  9. Eaton, J. P. & Murata, K. J. How volcanoes grow. Science 132, 925–938 (1960).

    Article  Google Scholar 

  10. Fiske, R. S. & Kinoshita, W. T. Inflation of Kilauea Volcano prior to its 1967–1968 eruption. Science 165, 341–349 (1969).

    Article  Google Scholar 

  11. Ryan, M. P., Blevins, J. Y. K., Okamura, A. T. & Koyanagi, R. Y. Magma reservoir subsidence mechanics: Theoretical summary and application of Kilauea Volcano, Hawai‘i. J. Geophys. Res. 88, 4147–4181 (1983).

    Article  Google Scholar 

  12. Cervelli, P. F. & Miklius, A. in The Pu‘u ‘Ō‘ō–Kūpaianaha Eruption of Kilauea Volcano, Hawai‘i: The First 20 Years (eds Heliker, C., Swanson, D. A. & Takahashi, T. J.) Ch. 9, 149–163 (US Geol. Surv. Prof. Pap. 1676, 2003).

    Google Scholar 

  13. Pietruszka, A. J. & Garcia, M. O. The size and shape of Kilauea Volcano’s summit magma storage reservoir: A geochemical probe. Earth Planet. Sci. Lett. 167, 311–320 (1999).

    Article  Google Scholar 

  14. Cervelli, P. et al. The 12 September 1999 Upper East Rift Zone dike intrusion at Kilauea Volcano, Hawai‘i. J. Geophys. Res. 107, B7 (2002).

    Article  Google Scholar 

  15. Owen, S. et al. January 30, 1997 eruptive event on Kilauea Volcano, Hawai‘i, as monitored by continuous GPS. Geophys. Res. Lett. 27, 2757–2760 (2000).

    Article  Google Scholar 

  16. Montgomery-Brown, E. K. et al. Geodetic evidence for en echelon dike emplacement and concurrent slow slip during the June 2007 intrusion and eruption at Kīlauea volcano, Hawai‘i. J. Geophys. Res. 115, B07405 (2010).

    Article  Google Scholar 

  17. Delaney, P. T., Fiske, R. S., Miklius, A., Okamura, A. T. & Sako, M. K. Deep magma body beneath the summit and rift zones of Kilauea Volcano, Hawai‘i. Science 247, 1311–1316 (1990).

    Article  Google Scholar 

  18. Owen, S. et al. Rapid deformation of Kilauea Volcano: Global Positioning System measurements between 1990 and 1996. J. Geophys. Res. 105, 18,983–18,993 (2000).

    Article  Google Scholar 

  19. Owen, S. et al. Rapid deformation of the south flank of Kilauea Volcano, Hawai‘i. Science 267, 1328–1332 (1995).

    Article  Google Scholar 

  20. Brooks, B. A. et al. Periodic slow earthquakes on the flank of Kilauea volcano, Hawai‘i. Earth Planet. Sci. Lett. 246, 207–216 (2006).

    Article  Google Scholar 

  21. Montgomery-Brown, E. K., Segall, P. & Miklius, A. Kilauea slow slip events: Dentification, source inversions, and relation to seismicity. J. Geophys. Res. 114, B00A03 (2009).

    Article  Google Scholar 

  22. Lipman, P. W., Lockwood, J. P., Okamura, R. T., Swanson, D. A. & Yamashita, K. M. Ground deformation associated with the 1975 magnitude-7.2 earthquake and resulting changes in activity of Kilauea Volcano, Hawai‘i (US Geol. Surv. Prof. Pap. 1276, 1985).

  23. Garcia, M. O., Rhodes, J. M., Trusdell, F. A. & Pietruszka, A. J. Petrology of lavas from the Puu Oo eruption of Kilauea Volcano: III. The Kupaianaha episode (1986–1992). Bull. Volc. 58, 359–379 (1996).

    Article  Google Scholar 

  24. Dzurisin, D., Koyanagi, R. Y. & English, T. T. Magma supply and storage at Kilauea Volcano, Hawai‘i, 1956–1983. J. Volcanol. Geotherm. Res. 21, 177–206 (1984).

    Article  Google Scholar 

  25. Cayol, V., Dieterich, J. H., Okamura, A. T. & Miklius, A. High magma storage rates before the 1983 eruption of Kilauea, Hawai‘i. Science 288, 2343–2346 (2000).

    Article  Google Scholar 

  26. Heliker, C. & Mattox, T. N. in The Pu‘u ‘Ō‘ō–Kūpaianaha Eruption of Kilauea Volcano, Hawai‘i: The First 20 Years (eds Heliker, C., Swanson, D. A. & Takahashi, T. J.) Ch. 1, 1–27 (US Geol. Surv. Prof. Pap. 1676, 2003).

    Google Scholar 

  27. Delaney, P. T., Miklius, A., Arnadottir, T., Okamura, A. T. & Sako, M. K. Motion of Kilauea Volcano during sustained eruption from the Puu Oo and Kupianaha vents, 1983–1991. J. Geophys. Res. 98, 17,801–17,820 (1993).

    Article  Google Scholar 

  28. Thornber, C. R. in The Pu‘u ‘Ō‘ō–Kūpaianaha Eruption of Kilauea Volcano, Hawai‘i: The First 20 Years (eds Heliker, C., Swanson, D. A. & Takahashi, T. J.) Ch. 7, 121–136 (US Geol. Surv. Prof. Pap. 1676, 2003).

    Google Scholar 

  29. Thornber, C. R. et al. Kilauea east rift zone magmatism; an episode 54 perspective. J. Petrol. 44, 1525–1559 (2003).

    Article  Google Scholar 

  30. Kauahikaua, J. & Miklius, A. in The Pu‘u ‘Ō‘ō–Kūpaianaha Eruption of Kilauea Volcano, Hawai‘i: The First 20 Years (eds Heliker, C., Swanson, D. A. & Takahashi, T. J.) Ch. 10, 165–171 (US Geol. Surv. Prof. Pap. 1676, 2003).

    Google Scholar 

  31. Miklius, A. & Cervelli, P. Interaction between Kilauea and Mauna Loa. Nature 421, 229 (2003).

    Article  Google Scholar 

  32. Duffield, W. A., Christiansen, R. L., Koyanagi, R. Y. & Peterson, D. W. Storage, migration, and eruption of magma at Kilauea volcano, Hawai‘i, 1971–1972. J. Volcanol. Geotherm. Res. 13, 273–307 (1982).

    Article  Google Scholar 

  33. Gerlach, T. M. Exsolution of H2O, CO2, and S during eruptive episodes at Kilauea Volcano, Hawai‘i. J. Geophys. Res. 91, 12177–12185 (1986).

    Article  Google Scholar 

  34. Gerlach, T. M., McGee, K. A., Elias, T., Sutton, A. J. & Doukas, M. P. Carbon dioxide emission rate of Kilauea Volcano: Implications for primary magma and the summit reservoir. J. Geophys. Res. 107, 2189 (2002).

    Article  Google Scholar 

  35. Hager, S. A., Gerlach, T. M. & Wallace, P. J. Summit CO2 emission rates by the CO2/SO2 ratio method at Kīlauea Volcano, Hawai’i, during a period of sustained inflation. J. Volcanol. Geotherm. Res. 177, 875–882 (2008).

    Article  Google Scholar 

  36. Sutton, A. J., Elias, T. & Kauahikaua, J. in The Pu‘u ‘Ō‘ō–Kūpaianaha Eruption of Kilauea Volcano, Hawai‘i: The First 20 Years (eds Heliker, C., Swanson, D. A. & Takahashi, T. J.) Ch. 8, 137–148 (US Geol. Surv. Prof. Pap. 1676, 2003).

    Google Scholar 

  37. Johnson, D. J., Sigmundsson, F. & Delaney, P. T. Comment on ‘Volume of magma accumulation or withdrawal estimated from surface uplift or subsidence with application to the 1960 collapse of Kilauea Volcano’ by P.T. Delaney and D. F. McTigue. Bull. Volcanol. 61, 491–493 (2000).

    Article  Google Scholar 

  38. Rivalta, E. & Segall, P. Magma compressibility and the missing source for some dike intrusions. Geophys. Res. Lett. 34, L04306 (2008).

    Google Scholar 

  39. Teplow, W. J. et al. Dacite melt at the Puna geothermal venture wellfield, big island of Hawai‘i. Eos Trans. Am. Geophys. Union 89, abstr. V23A-2129 (2008).

    Google Scholar 

  40. Poland, M. P. et al. New episodes of volcanism at Kilauea Volcano, Hawai‘i. Eos Trans. Am. Geophys. Union 89, 37–38 (2008).

    Article  Google Scholar 

  41. Brooks, B. A. et al. Magmatically triggered slow slip at Kilauea Volcano, Hawai‘i. Science 321, 1177 (2008).

    Article  Google Scholar 

  42. Wilson, D. et al. Small explosion from new vent at Kilauea’s summit. Eos Trans. Am. Geophys. Union 89, 203 (2008).

    Article  Google Scholar 

  43. Houghton, B. F., Swanson, D. A., Carey, R. J., Rausch, J. & Sutton, A. J. Pigeonholing pyroclasts: Insights from the 19 March 2008 explosive eruption of Kilauea Volcano. Geology 39, 263–266 (2011).

    Article  Google Scholar 

  44. Poland, M. P., Sutton, A. J. & Gerlach, T. M. Magma degassing triggered by static decompression at Kīlauea Volcano, Hawai‘i. Geophys. Res. Lett. 36, L16306 (2009).

    Article  Google Scholar 

  45. Amelung, F., Yun, S.H., Walter, T. R., Segall, P. & Kim, S-W. Stress control of deep rift intrusion at Mauna Loa volcano, Hawai‘i. Science 316, 1026–1030 (2007).

    Article  Google Scholar 

  46. Okubo, P. G. & Wolfe, C. J. Swarms of similar long-period earthquakes in the mantle beneath Mauna Loa Volcano. J. Volcanol. Geotherm. Res. 178, 787–794 (2008).

    Article  Google Scholar 

  47. Rhodes, J. M., Wenz, K. P., Neal, C. A., Sparks, J. W. & Lockwood, J. P. Geochemical evidence for invasion of Kilauea’s plumbing system by Mauna Loa magma. Nature 337, 257–260 (1990).

    Article  Google Scholar 

  48. Klein, F. W. Patterns of historical eruptions at Hawaiian volcanoes. J. Volcanol. Geotherm. Res. 12, 1–35 (1982).

    Article  Google Scholar 

  49. Dzurisin, D. A comprehensive approach to monitoring volcano deformation as a window on the eruption cycle. Rev. Geophys. 41, 1001 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

We thank D. Dzurisin, H. Gonnermann, J. Kauahikaua, M. Mangan, D. Swanson, T. Takahashi and W. Thatcher for constructive comments. The staff of the Hawaiian Volcano Observatory and their collaborators collected the data discussed in this report. The Kīlauea GPS network is supported by grants from the US Geological Survey (USGS), National Science Foundation and NASA (National Aeronautics and Space Administration) and is operated in collaboration by the USGS, Stanford University and Pacific GPS Facility at the University of Hawai‘i. RADARSAT-1 data were made available by the Alaska Satellite Facility. ENVISAT Advanced Synthetic Aperture Radar data were provided by the European Space Agency through a Category-1 proposal to the USGS. Electron microprobe analyses were conducted at the USGS Denver Microbeam Laboratory and bulk-lava compositions were determined using wavelength dispersive X-ray spectroscopy at Washington State University, Pullman, WA.

Author information

Authors and Affiliations

Authors

Contributions

M.P.P. processed the interferometric synthetic aperture radar data and wrote the manuscript. A.M. processed the GPS data. A.J.S. collected and analysed the gas geochemistry data. C.R.T. analysed the petrologic data. All authors discussed the data and developed the interpretations jointly.

Corresponding author

Correspondence to Michael P. Poland.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 996 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poland, M., Miklius, A., Jeff Sutton, A. et al. A mantle-driven surge in magma supply to Kīlauea Volcano during 2003–2007. Nature Geosci 5, 295–300 (2012). https://doi.org/10.1038/ngeo1426

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo1426

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing