Intra-Panthalassa Ocean subduction zones revealed by fossil arcs and mantle structure

Journal name:
Nature Geoscience
Year published:
Published online

The vast Panthalassa Ocean once surrounded the supercontinent Pangaea. Subduction has since consumed most of the oceanic plates that formed the ocean floor, so classic plate reconstructions based on magnetic anomalies can be used only to constrain the ocean’s history since the Cretaceous period1, 2, and the Triassic–Jurassic plate tectonic evolution of the Panthalassa Ocean remains largely unresolved3, 4. Geological clues come from extinct intra-oceanic volcanic arcs that formed above ancient subduction zones, but have since been accreted to the North American and Asian continental margins4. Here we compile data on the composition, the timing of formation and accretion, and the present-day locations of these volcanic arcs and show that intra-oceanic subduction zones must have once been situated in a central Panthalassa location in our plate tectonic reconstructions5, 6, 7. To constrain the palaeoposition of the extinct arcs, we correlate them with remnants of subducted slabs that have been identified in the mantle using seismic-wave tomographic models8, 9. We suggest that a series of subduction zones, together called Telkhinia, may have defined two separate palaeo-oceanic plate systems—the Pontus and Thalassa oceans. Our reconstruction provides constraints on the palaeolongitude and tectonic evolution of the Telkhinia subduction zones and Panthalassa Ocean that are crucial for global plate tectonic reconstructions and models of mantle dynamics.

At a glance


  1. Present understanding of the Panthalassa Ocean.
    Figure 1: Present understanding of the Panthalassa Ocean.

    Modified plate tectonic reconstruction5, 6, 7 centred at the 180° meridian at a, the present time and b, 200Myr ago (earliest Jurassic). Continental blocks in absolute plate reference frames: slab-fitted frame7, light grey; hybrid true-polar-wander-corrected frame5, 6, 22, dark grey. Light blue denotes preserved Jurassic (140–175Myr old) old crust of the Pacific plate. Yellow zigzag shows the presumed spreading ridge. White ellipses represent terranes: AK, Anadyr–Koryak; KO, Kolyma–Omolon; ON, Oku–Niikappu; S, Stikinia; WR, Wrangellia.

  2. Tomographic slices.
    Figure 2: Tomographic slices.

    Two cross-sections of the tomographic model8 centred at the 180° meridian of a, vertical slice at 4°N and b, horizontal slice at 1,900km depth. Fast (blue) P-wave speed anomalies at the centre of each tomography section show the suggested Triassic–Jurassic slab remnants. Yellow stars represent central Pacific seismic scatterers, caused by subducted and folded oceanic crust26. Zones of low- or absent image resolution occur above the inclined large-dashed line in the lower panel of a. Numbers along the horizontal axis in a denote arc-degrees along the section. The horizontal solid black line in b shows the location of section a.

  3. Comparison of tomographic models.
    Figure 3: Comparison of tomographic models.

    Tomographic slice a, at 2,300km depth8, showing positive P-wave speed anomalies below the central Pacific, depicted here by black dashed oval, and b, at 2,400km depth9, showing S-wave speed anomalies9 with zero to positive S-wave speed amplitudes, separating the LLSVP with strong negative amplitude into a western and eastern region. Black arrow shows the modelled extent of the western LLSVP high along a northwest–southeast profile28.

  4. Plate tectonic interpretation of tomography.
    Figure 4: Plate tectonic interpretation of tomography.

    a, Tomographic8 depth slice at 2,300km. Colour scale as in Fig. 3. Discussed slabs: EC, east China; F, Farallon; GI, Georgia Islands; Tk, Telkhinia slab group. b, Modified plate tectonic reconstruction5, 6, 7 200Myr ago (Jurassic–Triassic boundary). Red lines with triangles denote interpreted subduction zones, polarities are speculative. Yellow zigzag denotes presumed spreading ridge. Green line denotes presumed transform zone. White ellipses denote inferred position of the discussed exotic terranes (see also Fig. 1).


  1. Engebretson, D. C., Cox, A. & Gordon, R. G. Relative motions between oceanic and continental plates in the Pacific Basin. Geol. Soc. Am. Spec. Pap. 206, 159 (1985).
  2. Müller, R. D., Sdrolias, M., Gaina, C., Steinberger, B. & Heine, C. Long-term sea-level fluctuations driven by ocean basin dynamics. Science 319, 13571362 (2008).
  3. Nur, A. & Ben-Avraham, Z. Lost Pacifica continent. Nature 270, 4143 (1977).
  4. Nokleberg, W. J. et al. Phanerozoic tectonic evolution of the circum-north Pacific. USGS Prof. Pap. 1626, 1122 (2000).
  5. Torsvik, T. H., Müller, R. D., Van der Voo, R., Steinberger, B. & Gaina, C. Global plate motion frames: Toward a unified model. Rev. Geophys. 46, 144 (2008).
  6. Steinberger, B. & Torsvik, T. H. Absolute plate motions and true polar wander in the absence of hotspot tracks. Nature 452, 620624 (2008).
  7. van der Meer, D. G., Spakman, W., van Hinsbergen, D. J. J., Amaru, M. L. & Torsvik, T. H. Towards absolute plate motions constrained by lower-mantle slab remnants. Nature Geosci. 3, 3640 (2010).
  8. Amaru, M. L. Global Travel Time Tomography with 3-D Reference Models PhD thesis, Utrecht Univ. (2007).
  9. Ritsema, J., Deuss, A., van Heijst, H. J. & Woodhouse, J. H. S40RTS: A degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements. Geophys. J. Int. 184, 12231236 (2011).
  10. Isozaki, Y., Maruyama, S. & Furuoka, F. Accreted oceanic materials in Japan. Tectonophysics 181, 179205 (1990).
  11. Shi, G. R. The marine Permian of east and northeast Asia: An overview of biostratigraphy, palaeobiogeography and palaeogeographical implications. J. Asian Earth Sci. 26, 175206 (2006).
  12. Golonka, J. Late Triassic and Early Jurassic palaeogeography of the world. Palaeogeogr. Palaeoclimatol. Palaeoecol. 244, 297307 (2007).
  13. Ueda, H. & Miyashita, S. Tectonic accretion of a subducted intraoceanic remnant arc in Cretaceous Hokkaido, Japan, and implications for evolution of the Pacific northwest. Island Arc 14, 582598 (2005).
  14. Stone, D. B., Minyuk, P. & Kolosev, E. New paleomagnetic paleolatitudes for the Omulevka terrane of northeast Russia: A comparison with the Omolon terrane and the eastern Siberian platform. Tectonophysics 377, 5582 (2003).
  15. Oxman, V. S. Tectonic evolution of the Mesozoic Verkhoyansk–Kolyma belt (NE Asia). Tectonophysics 365, 4576 (2003).
  16. Harbert, W. et al. Reconnaissance paleomagnetism of Late Triassic blocks, Kuyul region, northern Kamchatka Peninsula, Russia. Tectonophysics 361, 215227 (2003).
  17. Filatova, N. I. & Vishnevskaya, V. S. Radiolarian stratigraphy and origin of the Mesozoic terranes of the continental framework of the northwestern Pacific (Russia). Tectonophysics 269, 131150 (1997).
  18. Kent, D. V. & Irving, E. Influence of inclination error in sedimentary rocks on the Triassic and Jurassic apparent pole wander path for North America and implications for Cordilleran tectonics. J. Geophys. Res. 115, B10103 (2010).
  19. Oda, H. & Suzuki, H. Paleomagnetism of Triassic and Jurassic red bedded chert of the Inuyama area, central Japan. J. Geophys. Res. 105, 2574325767 (2000).
  20. Uno, K., Furukawa, K. & Hada, S. Margin-parallel translation in the western Pacific: Paleomagnetic evidence from an allochthonous terrane in Japan. Earth Planet. Sci. Lett. 303, 153161 (2011).
  21. Matsuoka, A. Late Jurassic tropical Radiolaria: Vallupus and its related forms. Palaeogeogr. Palaeoclimatol. Palaeoecol. 119, 359369 (1996).
  22. Torsvik, T. H., Burke, K., Steinberger, B., Webb, S. J. & Ashwal, L. D. Diamonds sampled by plumes from the core-mantle boundary. Nature 466, 352355 (2010).
  23. van der Voo, R., Spakman, W. & Bijwaard, H. Mesozoic subducted slabs under Siberia. Nature 397, 246249 (1999).
  24. Lithgow-Bertollini, C. & Silver, P. G. Dynamic topography, plate driving forces and the African superswell. Nature 395, 269272 (1998).
  25. Steinberger, B. Slabs in the lower mantle—results of dynamic modelling compared with tomographic images and the geoid. Phys. Earth Planet. Int. 118, 241257 (2000).
  26. Kaneshima, S. & Helffrich, G. Small scale heterogeneity in the mid-lower mantle beneath the circum-Pacific area. Phys. Earth Planet. Int. 183, 91103 (2010).
  27. Garnero, E. J. & McNamara, A. K. Structure and dynamics of Earth’s lower mantle. Science 320, 626628 (2008).
  28. He, Y. & Wen, L. Structural features and shear-velocity structure of the Pacific Anomaly. J. Geophys. Res. 114, B02309 (2009).
  29. Grand, S., van der Hilst, R. D. & Widiyantoro, S. Global seismic tomography: A snapshot of convection in the earth. GSA Today 7, 17 (1997).
  30. Dickinson, W. R. & Lawton, T. F. Carboniferous to Cretaceous assembly and fragmentation of Mexico. Geol. Soc. Am. Bull. 113, 11421160 (2001).

Download references

Author information


  1. Institute of Earth Sciences, Utrecht University, Budapestlaan 4, 3584 CD Utrecht, The Netherlands

    • D. G. van der Meer,
    • W. Spakman &
    • M. L. Amaru
  2. Nexen Petroleum UK Ltd, Charter Place, Vine Street, Uxbridge, Middlesex UB8 1JG, UK

    • D. G. van der Meer
  3. Physics of Geological Processes, University of Oslo, NO-0316 Oslo, Norway

    • T. H. Torsvik &
    • D. J. J. van Hinsbergen
  4. Center for Geodynamics, Geological Survey of Norway, NO-7494 Trondheim, Norway

    • T. H. Torsvik
  5. School of Geosciences, University of the Witwatersrand, WITS 2050 Johannesburg, South Africa

    • T. H. Torsvik
  6. Center for Advanced Study, Norwegian Academy of Science and Letters, Drammensveien 78, NO-0271 Oslo, Norway

    • T. H. Torsvik &
    • D. J. J. van Hinsbergen
  7. Chevron Energy Technology Company, 1500 Louisiana St, Houston, Texas 77002, USA

    • M. L. Amaru


D.G.v.d.M. carried out the slab identification and plate tectonic reconstruction modifications. W.S. co-developed the tomographic model. T.H.T. provided the plate tectonic reconstructions. D.J.J.v.H. provided integration between surface geology, orogenesis and subduction. M.L.A. developed the tomographic model as part of her PhD work at Utrecht University. All authors shared in writing the article.

Competing financial interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to:

Author details

Supplementary information

PDF files

  1. Supplementary Information (2.10 MB)

    Supplementary Information


  1. Supplementary Movies (4.80 MB)

    Supplementary Movies

  2. Supplementary Information (2.90 MB)

    Supplementary Movies

Additional data