Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

First plants cooled the Ordovician

The Late Ordovician period, ending 444 million years ago, was marked by the onset of glaciations. The expansion of non-vascular land plants accelerated chemical weathering and may have drawn down enough atmospheric carbon dioxide to trigger the growth of ice sheets.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Global changes during the Ordovician period.
Figure 2: Moss enhances the weathering of Al, Ca, Fe, K and Mg from silicates.
Figure 3: Model results.

References

  1. Trotter, J. A., Williams, I. S., Barnes, C. R., Lecuyer, C. & Nicoll, R. S. Science 321, 550–554 (2008).

    Article  Google Scholar 

  2. Berner, R. A. Science 276, 544–546 (1997).

    Article  Google Scholar 

  3. Berner, R. A. Geochim. Cosmochim. Acta 70, 5653–5664 (2006).

    Article  Google Scholar 

  4. Bergman, N. M., Lenton, T. M. & Watson, A. J. Am. J. Sci. 304, 397–437 (2004).

    Article  Google Scholar 

  5. Tobin, K. J. & Bergstrom, S. M. Palaeogeog. Palaeoclim. Palaeoecol. 181, 399–417 (2002).

    Article  Google Scholar 

  6. Tobin, K. J., Bergström, S. M. & De La Garza, P. Palaeogeog. Palaeoclim. Palaeoecol. 226, 187–204 (2005).

    Article  Google Scholar 

  7. Yapp, C. J. & Poths, H. Earth Planet. Sci. Lett. 137, 71–82 (1996).

    Article  Google Scholar 

  8. Gibbs, M. T., Barron, E. J. & Kump, L. R. Geology 25, 447–450 (1997).

    Article  Google Scholar 

  9. Herrmann, A. D., Patzkowsky, M. E. & Pollard, D. Geology 31, 485–488 (2003).

    Article  Google Scholar 

  10. Kump, L. R. et al. Palaeogeog. Palaeoclim. Palaeoecol. 152, 173–187 (1999).

    Article  Google Scholar 

  11. Young, S. A., Saltzman, M. R., Foland, K. A., Linder, J. S. & Kump, L. R. Geology 37, 951–954 (2009).

    Article  Google Scholar 

  12. Nardin, E. et al. Geol. Soc. Am. Bull. 123, 1181–1192 (2011).

    Article  Google Scholar 

  13. Saltzman, M. R. & Young, S. A. Geology 33, 109–112 (2005).

    Article  Google Scholar 

  14. Pope, M. C. & Steffen, J. B. Geology 31, 63–66 (2003).

    Article  Google Scholar 

  15. Berry, W. B. N. Geol. Soc. Am. S. 466, 141–147 (2010).

    Google Scholar 

  16. Bateman, R. M. et al. Annu. Rev. Ecol. Syst. 29, 263–292 (1998).

    Article  Google Scholar 

  17. Moulton, K. & Berner, R. A. Geology 26, 895–898 (1998).

    Article  Google Scholar 

  18. Wellman, C. H. & Gray, J. Phil. Trans. R. Soc. Lond. B 355, 717–732 (2000).

    Article  Google Scholar 

  19. Rubinstein, C. V., Gerrienne, P., de la Puente, G. S., Astini, R. A. & Steemans, P. New Phytol. 188, 365–369 (2010).

    Article  Google Scholar 

  20. Qiu, Y.-L. et al. Proc. Natl Acad. Sci.USA 103, 15511–15516 (2006).

    Article  Google Scholar 

  21. Chadwick, O. A., Derry, L. A., Vitousek, P. M., Huebert, B. J. & Hedin, L. O. Nature 397, 491–497 (1999).

    Article  Google Scholar 

  22. Algeo, T. J. & Scheckler, S. E. Phil. Trans. R. Soc. Lond. B 353, 113–130 (1998).

    Article  Google Scholar 

  23. Steemans, P. et al. Science 324, 353 (2009).

    Article  Google Scholar 

  24. Poulton, S. W. & Raiswell, R. Am. J. Sci. 302, 774–805 (2002).

    Article  Google Scholar 

  25. Sheehan, P. M. Annu. Rev. Earth Planet. Sci. 29, 331–364 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Earth and Life Systems Alliance (ELSA) for funding this research. T.M.L. is also supported by NERC (NE/I005978/1). L.D. and N.P. are also supported by an EVO500 grant from the ER AdG program. P. Bota provided assistance with GC-MS.

Author information

Authors and Affiliations

Authors

Contributions

T.M.L. and L.D. designed the study. M.C. conducted the microcosm experiments with input from N.P. and L.D. M.C., M.J., L.D. and T.M.L. conducted geochemical analyses. N.P. and L.D. identified acids in moss exudates. T.M.L. did the modelling and sensitivity analyses. T.M.L. and L.D. wrote the paper with input from M.J., M.C. and N.P.

Corresponding authors

Correspondence to Timothy M. Lenton or Liam Dolan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

First plants cooled the Ordovician (PDF 806 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lenton, T., Crouch, M., Johnson, M. et al. First plants cooled the Ordovician. Nature Geosci 5, 86–89 (2012). https://doi.org/10.1038/ngeo1390

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo1390

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing