Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Arc magmas sourced from mélange diapirs in subduction zones

Abstract

At subduction zones, crustal material enters the mantle. Some of this material, however, is returned to the overriding plate through volcanic and plutonic activity. Magmas erupted above subduction zones show a characteristic range of compositions that reflect mixing in the magma source region between three components: hydrous fluids derived from the subducted oceanic crust, components of the thin veneer of subducted sediments and peridotite mantle rocks. The mechanism for mixing and transport of these components has been enigmatic. A combination of results from the fields of petrology, numerical modelling, geophysics and geochemistry suggests a two-step process. First, intensely mixed metamorphic rock formations—mélanges—form along the interface between the subducted slab and the mantle. As the mélange contains the characteristic three-component geochemical pattern of subduction-zone magmas, we suggest that mélange formation provides the physical mixing process. Then, blobs of low-density mélange material—diapirs—rise buoyantly from the surface of the subducting slab and transport the well-mixed mélange material into the mantle beneath the volcanoes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Trace-element compositions of mélange rocks in comparison with subduction-zone volcanic rocks.
Figure 2: 3D schematic drawing of a subduction zone depicting the principle elements of the mélange-diapir model.

Similar content being viewed by others

References

  1. Arculus, R. J. & Powell, R. Source component mixing in the regions of arc magma generation. J. Geophys. Res. B 91, 5913–5926 (1986).

    Article  Google Scholar 

  2. Ellam, R. & Hawkesworth, C. J. Elemental and isotopic variations in subduction related basalts: Evidence for a three component model. Contrib. Mineral. Petrol. 98, 72–80 (1988).

    Article  Google Scholar 

  3. Elliott, T. in Inside the Subduction Factory 1st edn vol. 138 (ed. Eiler, J.) 23–45 (Geophys. Monogr. Ser., Am. Geophys. Union, 2003).

    Book  Google Scholar 

  4. Furukawa, Y. Depth of the decoupling plate interface and thermal structure under arcs. J. Geophys. Res. (B) 98, 20005–20013 (1993).

    Article  Google Scholar 

  5. Schmidt, M. W. & Poli, S. Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth Planet. Sci. Lett. 163, 361–379 (1998).

    Article  Google Scholar 

  6. Cloos, M. & Shreve, R. L. Subduction channel model of prism accretion, mélange formation, sediment subduction, and subduction erosion at convergent plate margins: 1. Background and description. Pure Appl. Geophys. 128, 455–500 (1988).

    Article  Google Scholar 

  7. Guillot, S., Hattori, K. H., Agard, P., Schwartz, S. & Vidal, O. in Subduction Zone Geodynamics (eds Lallemand, S. & Funiciello, F.) 175–205 (Springer, 2009).

    Book  Google Scholar 

  8. King, R. L., Kohn, M. J. & Eiler, J. M. Constraints on the petrologic structure of the subduction zone slab–mantle interface from Franciscan Complex exotic ultramafic blocks. GSA Bull. 115, 1097–1109 (2003).

    Article  Google Scholar 

  9. Gerya, T. V., Stoeckhert, B. & Perchuk, A. L. Exhumation of high-pressure metamorphic rocks in a subduction channel; a numerical simulation. Tectonics 21, 6–19 (2002).

    Article  Google Scholar 

  10. Bebout, G. E. Field-based evidence for devolatilization in subduction zones: Implications for arc magmatism. Science 251, 413–416 (1991).

    Article  Google Scholar 

  11. Sorensen, S. S. & Grossman, J. N. Accessory minerals and subduction zone metasomatism: A geochemical comparison of two mélanges (Washington and California, USA). Chem. Geol. 110, 269–297 (1993).

    Article  Google Scholar 

  12. Bebout, G. E. & Barton, M. D. Tectonic and metasomatic mixing in a high-T, subduction-zone mélange—insights into the geochemical evolution of the slab–mantle interface. Chem. Geol. 187, 79–106 (2002).

    Article  Google Scholar 

  13. Miller, D. P., Marschall, H. R. & Schumacher, J. C. Metasomatic formation and petrology of blueschist-facies hybrid rocks from Syros (Greece): Implications for reactions at the slab–mantle interface. Lithos 107, 53–67 (2009).

    Article  Google Scholar 

  14. Van Keken, P. E., Hacker, B. R., Syracuse, E. M. & Abers, G. A. Subduction factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide. J. Geophys. Res. (B) 116, 01401 (2011).

    Article  Google Scholar 

  15. Spandler, C., Hermann, J., Faure, K., Mavrogenes, J. A. & Arculus, R. The importance of talc and chlorite hybrid rocks for volatile recycling through subduction zones; evidence from the high-pressure subduction mélange of New Caledonia. Contrib. Mineral. Petrol. 155, 181–198 (2008).

    Article  Google Scholar 

  16. Harlow, G. E. Jadeitite from Guatemala: New observations and distinctions among multiple occurrences. Geol. Acta 9, 363–387 (2011).

    Google Scholar 

  17. Tsujimori, T. & Harlow, G. E. Petrogenetic relationships between jadeitite and associated high-pressure and low-temperature metamorphic rocks in worldwide jadeitite localities: A review. Eur. J. Mineral. 24, 371–390 (2012).

    Article  Google Scholar 

  18. Sorensen, S. S., Sisson, V. B., Harlow, G. E. & Avé Lallemant, H. G. Element residence and transport during subduction zone metasomatism: Evidence from a jadeitite-serpentinite contact, Guatemala. Internat. Geol. Rev. 52, 899–940 (2010).

    Article  Google Scholar 

  19. Sorensen, S. S., Grossman, J. N. & Perfit, M. R. Phengite-hosted LILE enrichment in eclogite and related rocks: Implications for fluid-mediated mass transfer in subduction zones and arc magma genesis. J. Petrol. 38, 3–34 (1997).

    Article  Google Scholar 

  20. Tatsumi, Y. Migration of fluid phases and genesis of basalt magmas in subduction zones. J. Geophys. Res. (B) 94, 4697–4707 (1989).

    Article  Google Scholar 

  21. Pawley, A. Chlorite stability in mantle peridotite: The reaction clinochlore + enstatite = forsterite + pyrope + H2O. Contrib. Mineral. Petrol. 144, 449–456 (2003).

    Article  Google Scholar 

  22. Grove, T. L., Till, C. B., Lev, E., Chatterjee, N. & Médard, E. Kinematic variables and water transport control the formation and location of arc volcanoes. Nature 459, 694–697 (2009).

    Article  Google Scholar 

  23. Marschall, H. R., Ludwig, T., Altherr, R., Kalt, A. & Tonarini, S. Syros metasomatic tourmaline: Evidence for very high- δ11B fluids in subduction zones. J. Petrol. 47, 1915–1942 (2006).

    Article  Google Scholar 

  24. Helffrich, G. & Abers, G. A. Slab low-velocity layer in the eastern Aleutian subduction zone. Geophys. J. Inter. 130, 640–648 (1997).

    Article  Google Scholar 

  25. Abers, G. A. Seismic low-velocity layer at the top of subducting slabs: Observations, predictions, and systematics. Phys. Earth Planet. Inter. 149, 7–29 (2005).

    Article  Google Scholar 

  26. King, R. L., Bebout, G. E., Moriguti, T. & Nakamura, E. Elemental mixing systematics and Sr-Nd isotope geochemistry of mélange formation: Obstacles to identification of fluid sources to arc volcanics. Earth Planet. Sci. Lett. 246, 288–304 (2006).

    Article  Google Scholar 

  27. Pabst, S. et al. The fate of subducted oceanic slabs in the shallow mantle: insights from boron isotopes and light element composition of metasomatized blueschists from the Mariana forearc. Lithos 132–133, 162–179 (2012).

    Article  Google Scholar 

  28. Hacker, B. R. H2O subduction beyond arcs. Geochem. Geophys. Geosys. 9, Q03001 (2008).

    Article  Google Scholar 

  29. Rüpke, L. H., Phipps Morgan, J., Hort, M. & Connolly, J. A. D. Serpentine and the subduction zone water cycle. Earth Planet. Sci. Lett. 223, 17–34 (2004).

    Article  Google Scholar 

  30. Gerya, T. V., Connolly, J. A. D., Yuen, D. A., Gorczyk, W. & Capel, A. M. Seismic implications of mantle wedge plumes. Phys. Earth Planet. Inter. 156, 59–74 (2006).

    Article  Google Scholar 

  31. Castro, A. et al. Melting relations of MORB-sediment mélanges in underplated mantle wedge plumes; implications for the origin of Cordilleran-type batholiths. J. Petrol. 51, 1267–1295 (2010).

    Article  Google Scholar 

  32. Zhu, G. et al. Three-dimensional dynamics of hydrous thermal-chemical plumes in oceanic subduction zones. Geochem. Geophys. Geosys. 10, Q11006 (2009).

    Article  Google Scholar 

  33. Behn, M. D., Kelemen, P. B., Hirth, G., Hacker, B. R. & Massonne, H. J. Diapirs as the source of the sediment signature in arc lavas. Nature Geosci. 4, 641–646 (2011).

    Article  Google Scholar 

  34. Hasenclever, J., Phipps Morgan, J., Hort, M. & Rüpke, L. H. 2D and 3D numerical models on compositionally buoyant diapirs in the mantle wedge. Earth Planet. Sci. Lett. 311, 53–68 (2011).

    Article  Google Scholar 

  35. Marsh, B. D. Island arc development: Some observations, experiments, and speculations. J. Geol. 87, 687–713 (1979).

    Article  Google Scholar 

  36. Hall, P. S. & Kincaid, C. Diapiric flow at subduction zones: A recipe for rapid transport. Science 292, 2472–2475 (2001).

    Article  Google Scholar 

  37. Miller, D. M., Goldstein, S. L. & Langmuir, C. H. Cerium/lead and lead isotope ratios in arc magmas and the enrichment of lead in the continents. Nature 368, 514–520 (1994).

    Article  Google Scholar 

  38. Singer, B. S. et al. Along-strike trace element and isotopic variation in Aleutian island arc basalt: Subduction melts sediments and dehydrates serpentine. J. Geophys. Res. (B) 112, 06206 (2007).

    Article  Google Scholar 

  39. Tatsumi, Y., Sakuyama, M., Fukuyama, H. & Kushiro, I. Generation of arc basalt magmas and thermal structure of the mantle wedge in subduction zones. J. Geophys. Res. (B) 88, 5815–5825 (1983).

    Article  Google Scholar 

  40. Keleman, P. B., Rilling, J. L., Parmentier, E. M., Mehl, L. & Hacker, B. R. in Inside the Subduction Factory vol. 138 (ed. Eiler, J.) 293–311 (Monographs, Am. Geophys. Union, 2003).

    Book  Google Scholar 

  41. Kelley, K. A. et al. Mantle melting as a function of water content beneath the Mariana arc. J. Petrol. 51, 1711–1738 (2010).

    Article  Google Scholar 

  42. Peacock, S. M. et al. Thermal structure of the Costa Rica-Nicaragua subduction zone. Phys. Earth Planet. Inter. 149, 187–200 (2005).

    Article  Google Scholar 

  43. Currie, C. A. & Hyndman, R. D. The thermal structure of subduction zone back arcs. J. Geophys. Res. (B) 111, 08404 (2006).

    Article  Google Scholar 

  44. Morris, J. D., Gosse, J., Brachfeld, S. & Tera, F. in Beryllium: Mineralogy, Petrology and Geochemistry Vol. 50 (ed. Grew, E. S.) Ch. 5, 207–270 (Rev. Mineral., Mineral. Soc. Am., 2002).

    Book  Google Scholar 

  45. Turner, S., Evans, P. & Hawkesworth, C. J. Ultra-fast source-to-surface movement of melt at island arcs from 226Ra–230Th systematics. Science 292, 1363–1366 (2001).

    Article  Google Scholar 

  46. Kelemen, P. B., Hanghøj, K. & Greene, A. R. in The Crust Vol. 3 (eds Rudnick, R. L., Holland, H. D. & Turekian, K. K.) 593–659 (Treatise on Geochemistry, Elsevier-Pergamon, 2003).

    Google Scholar 

  47. McDonough, W. F. & Sun, S-S. The composition of the Earth. Chem. Geol. 120, 223–253 (1995).

    Article  Google Scholar 

  48. Hofmann, A. W. Chemical differentiation of the Earth: The relationship between mantle, continental crust, and oceanic crust. Earth Planet. Sci. Lett. 90, 297–314 (1988).

    Article  Google Scholar 

  49. Plank, T. & Langmuir, C. H. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem. Geol. 145, 325–394 (1998).

    Article  Google Scholar 

Download references

Acknowledgements

We thank J. Blundy, N. Shimizu, G. Abers and the participants of the 2010 State-of-the-Arc meeting for discussions. G. Harlow is thanked for providing unpublished whole-rock data. Careful and constructive reviews by B. Hacker, S. Penniston-Dorland and P. Agard are gratefully acknowledged. H.M. was financially supported by the J. Lamar Worzel Assistant Scientist Fund and the Penzance Endowed Fund in Support of Assistant Scientists. Financial support from NSF grant no. 1119403 (G. Harlow) is acknowledged. We would like to thank A. Hertwig, W. Maresch and H-P. Schertl for guiding us in the field.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to idea development and data compilation. H.R.M. wrote the manuscript.

Corresponding author

Correspondence to Horst R. Marschall.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 997 kb)

Supplementary Information

Supplementary Information (XLS 237 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marschall, H., Schumacher, J. Arc magmas sourced from mélange diapirs in subduction zones. Nature Geosci 5, 862–867 (2012). https://doi.org/10.1038/ngeo1634

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo1634

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing