Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Non-mare silicic volcanism on the lunar farside at Compton–Belkovich

Abstract

Non-basaltic volcanism is rare on the Moon. The best known examples occur on the lunar nearside in the compositionally evolved Procellarum KREEP terrane. However, there is an isolated thorium-rich area—the Compton–Belkovich thorium anomaly—on the lunar farside for which the origin is enigmatic. Here we use images from the Lunar Reconnaissance Orbiter Cameras, digital terrain models and spectral data from the Diviner lunar radiometer to assess the morphology and composition of this region. We identify a central feature, 25 by 35 km across, that is characterized by elevated topography and relatively high reflectance. The topography includes a series of domes that range from less than 1 km to more than 6 km across, some with steeply sloping sides. We interpret these as volcanic domes formed from viscous lava. We also observe arcuate to irregular circular depressions, which we suggest result from collapse associated with volcanism. We find that the volcanic feature is also enriched in silica or alkali-feldspar, indicative of compositionally evolved, rhyolitic volcanic materials. We suggest that the Compton–Belkovich thorium anomaly represents a rare occurrence of non-basaltic volcanism on the lunar farside. We conclude that compositionally evolved volcanism did occur far removed from the Procellarum KREEP terrane.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Compton–Belkovich thorium anomaly.
Figure 2: Geomorphology of the CBF.
Figure 3: Topography of the CBF.
Figure 4: Domes in the CBF.
Figure 5: Compositions of the CBTA and surrounding region.
Figure 6: Mineralogical information from LRO Diviner.

Similar content being viewed by others

References

  1. Lawrence, D. J. et al. High resolution measurements of absolute thorium abundance on the lunar surface. Geophys. Res. Lett. 26, 2681–2683 (1999).

    Article  Google Scholar 

  2. Lawrence, D. J. et al. Small-area thorium features on the lunar surface. J. Geophys. Res. 108, JE002050 (2003).

    Article  Google Scholar 

  3. Lawrence, D. J. et al. Global spatial deconvolution of Lunar Prospector Th abundances. Geophys. Res. Lett. 34, L03201 (2007).

    Google Scholar 

  4. Gillis, J. J., Jolliff, B. L., Lawrence, D. J., Lawson, S. L. & Prettyman, T. H. The Compton–Belkovich region of the Moon: Remotely sensed observations and lunar sample association. Lunar Planet. Sci. 33, abstr. no. 1967 (2002).

    Google Scholar 

  5. Robinson, M. S. et al. Lunar Reconnaissance Orbiter Camera (LROC) instrument overview. Space Sci. Rev. 150, 81–124 (2010).

    Article  Google Scholar 

  6. Tran, T. et al. Generating digital terrain models from LROC stereo images with SOCET SET. Lunar Planet. Sci. 41, abstr. no. 2515 (2010).

    Google Scholar 

  7. Scholten, F. et al. Towards global lunar topography using LROC WAC stereo data. Lunar Planet. Sci. 41, abstr. no. 2111 (2010).

    Google Scholar 

  8. Zuber, M. T. et al. The Lunar Orbiter Laser Altimeter investigation on the Lunar Reconnaissance Orbiter mission. Space Sci. Rev. 150, 63–80 (2010).

    Article  Google Scholar 

  9. Lawrence, S. J. et al. LROC observations of the Marius Hills. Lunar Planet. Sci. 41, abstr. no. 1906 (2010).

    Google Scholar 

  10. Murase, T. & McBirney, A. R. Viscosity of lunar lavas. Science 167, 1491–1493 (1970).

    Article  Google Scholar 

  11. Li, L. & Mustard, J. F. Compositional gradients across mare-highland contacts: Importance and geological implication of lateral transport. J. Geophys. Res. 105, 20431–20450 (2000).

    Article  Google Scholar 

  12. Lawrence, D. J. et al. Iron abundances on the lunar surface as measured by the Lunar Prospector gamma-ray and neutron spectrometers. J. Geophys. Res. 107, JE001530 (2002).

    Article  Google Scholar 

  13. Ryder, G. Lunar sample 15405: Remnant of a KREEP basalt-granite differentiated pluton. Earth Planet. Sci. Lett. 29, 255–268 (1976).

    Article  Google Scholar 

  14. Warren, P. H. et al. Seventh foray: Whitlockite-rich lithologies, a diopside-bearing troctolitic anorthosite, ferroan anorthosites, and KREEP. Proc. Lunar Planet. Sci. Conf. 14th in J. Geophys. Res. 88, B151–B164 (1983).

    Article  Google Scholar 

  15. Warren, P. H., Jerde, E. A. & Kallemeyn, G. W. Pristine Moon rocks: A ‘large’ felsite and a metal-rich ferroan anorthosite. Proc. Lunar. Planet. Sci. Conf. 17th in J. Geophys. Res. 92, E303–E313 (1987).

    Article  Google Scholar 

  16. Marvin, U. B., Lindstrom, M. M., Holmberg, B. B. & Martinez, R. R. New observations on the quartz monzodiorite-granite suite. Proc. Lunar Planet. Sci. 21, 119–135 (1991).

    Google Scholar 

  17. Jolliff, B. L. Fragments of quartz monzodiorite and felsite in Apollo 14 soil particles. Proc. Lunar Planet. Sci. 21, 101–118 (1991).

    Google Scholar 

  18. Snyder, G. A., Taylor, L. A. & Halliday, A. Chronology and petrogenesis of the lunar highlands alkali suite: Cumulates from KREEP basalt crystallization. Geochim. Cosmochim. Acta 59, 1185–1203 (1995).

    Article  Google Scholar 

  19. Seddio, S. M., Jolliff, B. L., Korotev, R. L. & Zeigler, R. A. A newly characterized granite from the Apollo 12 regolith. Lunar Planet. Sci. 40, abstr. no. 2285 (2009).

    Google Scholar 

  20. Seddio, S. M., Korotev, R. L., Jolliff, B. L. & Zeigler, R. A. Comparing the bulk compositions of lunar granites, with petrologic implications. Lunar Planet. Sci. 41, abstr. no. 2688 (2010).

    Google Scholar 

  21. Jolliff, B. L. Large-scale separation of K-frac and REEP-frac in the source regions of Apollo impact-melt breccias, and a revised estimate of the KREEP composition. Int. Geology Rev. 40, 916–935 (1998).

    Article  Google Scholar 

  22. Paige, D. A. et al. The Lunar Reconnaissance Orbiter Diviner Lunar Radiometer Experiment. Space Sci. Rev. 150, 125–160 (2010).

    Article  Google Scholar 

  23. Greenhagen, B. T. et al. Global silicate mineralogy of the Moon from the Diviner lunar radiometer. Science 329, 1507–1509 (2010).

    Article  Google Scholar 

  24. Glotch, T. D. et al. Identification of highly silicic features on the Moon. Science 329, 1510–1513 (2010).

    Article  Google Scholar 

  25. Wilhelms, D. E. in The geologic history of the Moon Vol. 1348 (US Geol. Surv. Prof. Paper, United States Government Printing Office, 1987).

    Book  Google Scholar 

  26. Jolliff, B. L., Gillis, J. J., Haskin, L., Korotev, R. L. & Wieczorek, M. A. Major lunar crustal terranes: Surface expressions and crust-mantle origins. J. Geophys. Res. 105, 4197–4216 (2000).

    Article  Google Scholar 

  27. Taylor, G. J., Warner, R. D., Keil, K., Ma, M-S. & Schmitt, R. A. in Proceedings of the Conference on the Lunar Highlands Crust (eds Papike, J. J. & Merrill, R. B.) 339–352 (Geochim. Cosmochim. Acta: Supplement, 12, Pergamon, 1980).

    Google Scholar 

  28. Longhi, J. Silicate liquid immiscibility in isothermal crystallization experiments. Proc. Lunar Planet. Sci. Conf. 20, 13–24 (1990).

    Google Scholar 

  29. McBirney, A. R. & Nakamura, Y. Immiscibility in late-stage magmas of the Skaergaard intrusion. Carnegie Inst. Wash. Yearb. 73, 348–352 (1974).

    Google Scholar 

  30. Hawke, B. R. et al. Hansteen Alpha: A volcanic construct in the lunar highlands. J. Geophys. Res. 108, E002013 (2003).

    Google Scholar 

  31. Chevrel, S. D., Pinet, P. C. & Head, J. W. III Gruithuisen domes region: A candidate for an extended nonmare volcanism unit on the Moon. J. Geophys. Res. 104, 16515–16529 (1999).

    Article  Google Scholar 

  32. Wilson, L. & Head, J. W. Lunar Gruithuisen and Mairan domes: Rheology and mode of emplacement. J. Geophys. Res. 108, 5012 (2003).

    Google Scholar 

  33. Hagerty, J. J. et al. Refined thorium abundances for lunar red spots: Implications for evolved, nonmare volcanism on the Moon. J. Geophys. Res. 111, E06002 (2006).

    Article  Google Scholar 

  34. Lawrence, S. J. et al. Composition and origin of the Dewar geochemical anomaly. J. Geophys. Res. 113, E02001 (2008).

    Google Scholar 

  35. Tran, T. et al. Morphometry of lunar volcanic domes from LROC. Lunar Planet. Sci. 42, abstr. no. 2228 (2011).

    Google Scholar 

  36. Wieczorek, M. A. & Phillips, R. J. Potential anomalies on a sphere: Application to the thickness of the lunar crust. J. Geophys. Res. 103, 1715–1724 (1998).

    Article  Google Scholar 

  37. Wieczorek, M. A. et al. in New Views of the Moon Vol. 60 (eds Jolliff, B. L., Wieczorek, M. A., Shearer, C. K. & Neal, C. R.) 221–364 (Mineralogical Society of America, 2006).

    Book  Google Scholar 

  38. Tran, T. et al. Generating digital terrain models using LROC NAC images. Joint Symposium of ISPRS Technical Commission IV & AutoCarto in conjunction with ASPRS/CaGIS 2010 Fall Specialty Conference, Nov. 15–19, Orlando, Florida.

  39. Scholten, F. et al. Towards global lunar topography using LROC WAC stereo data. Lunar Planet. Sci. 41, abstr. no. 2111 (2010).

    Google Scholar 

Download references

Acknowledgements

The authors thank the LRO, LROC, and Diviner operations teams for their work and NASA ESMD and SMD for support of the LRO mission. The authors thank N. Petro for comments, which led to significant improvements in the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

B.L.J. drafted the initial manuscript. S.A.W. processed WAC images and DTMs, and assisted with NAC image processing. S.J.L. worked with B.L.J. on the topic of lunar red spots and volcanic domes. M.S.R is the principal investigator of the LRO Cameras, was responsible for development and operation of the camera system, and contributed to scientific interpretations. F.S. and J.O. of DLR derived and provided the WAC DTM. T.N.T. processed and provided the NAC DTMs and first characterized the ‘big dome.’ S.J.L., M.S.R., B.R.H., H.H., and C.H.v.d.B. provided input on geological relationships and contributed to writing the paper. H.S. provided data for reflectance analysis. B.T.G. and D.A.P. provided the Diviner data, T.D.G. contributed to interpretation of the CF, and D.A.P. is the principal investigator of the Diviner lunar radiometer. All of the authors contributed to assessment and discussion of the results.

Corresponding author

Correspondence to Bradley L. Jolliff.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1865 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jolliff, B., Wiseman, S., Lawrence, S. et al. Non-mare silicic volcanism on the lunar farside at Compton–Belkovich. Nature Geosci 4, 566–571 (2011). https://doi.org/10.1038/ngeo1212

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo1212

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing