Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Influence of subsurface biosphere on geochemical fluxes from diffuse hydrothermal fluids

Abstract

Hydrothermal vents along mid-ocean systems host unique, highly productive biological communities, based on microbial chemoautotrophy, that thrive on the sulphur, metals, nitrogen and carbon emitted from the vents into the deep ocean. Geochemical studies of vents have centred on analyses of high-temperature, focused hydrothermal vents, which exhibit very high flow rates and are generally considered too hot for microbial life. Geochemical fluxes and metabolic activity associated with habitable, lower temperature diffuse fluids remain poorly constrained. As a result, little is known about the extent to which microbial communities, particularly in the subsurface, influence geochemical flux from more diffuse flows. Here, we estimate the net flux of methane, carbon dioxide and hydrogen from diffuse and focused hydrothermal vents along the Juan de Fuca ridge, using an in situ mass spectrometer and flowmeter. We show that geochemical flux from diffuse vents can equal or exceed that emanating from hot, focused vents. Notably, hydrogen concentrations in fluids emerging from diffuse vents are 50% to 80% lower than predicted. We attribute the loss of hydrogen in diffuse vent fluids to microbial consumption in the subsurface, and suggest that subsurface microbial communities can significantly influence hydrothermal geochemical fluxes to the deep ocean.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Time-series of selected volatile concentrations from survey of the Faulty Towers vent structure in Mothra hydrothermal vent field.
Figure 2: Mixing diagrams of CO2(aq), CH4 and H2 from surveys of Faulty Towers (Mothra), Dante (MEF) and Hulk (MEF) vent structures.

Similar content being viewed by others

References

  1. Fisher, C. R. Jr, Takai, K. & Le Bris, N. Hydrothermal vent ecosystems. Oceanography 20, 18–27 (2007).

    Google Scholar 

  2. Johnson, H. P. & Pruis, M. J. Fluxes of fluid and heat from the oceanic crustal reservoir. Earth Planet. Sci. Lett. 216, 565–574 (2003).

    Article  Google Scholar 

  3. Mottl, M. J. in Energy and Mass Transfer in Marine Hydrothermal Systems (eds Halbach, P., Tunnicliffe, V. & Hein, J.) 271–286 (Dahlem Univ. Press, 2003).

    Google Scholar 

  4. Wheat, C. G., McManus, J., Mottl, M. J. & Giambalvo, E. Oceanic phosphorus imbalance: Magnitude of the mid-ocean ridge flank hydrothermal sink. Geophys. Res. Lett. 30, 1895–1899 (2003).

    Article  Google Scholar 

  5. Lilley, M. D., Butterfield, D. A., Lupton, J. E. & Olson, E. J. Magmatic events can produce rapid changes in hydrothermal vent chemistry. Nature 422, 878–881 (2003).

    Article  Google Scholar 

  6. Lilley, M. D. et al. Anomalous CH4 and NH4+ concentrations at an unsedimented mid-ocean-ridge hydrothermal system. Nature 364, 45–47 (1993).

    Article  Google Scholar 

  7. Tivey, M. K. Generation of seafloor hydrothermal vent fluids and associated mineral deposits. Oceanography 20, 50–65 (2007).

    Article  Google Scholar 

  8. Tivey, M. K., Humphris, S. E., Thompson, G., Hannington, M. D. & Rona, P. A. Deducing patterns of fluid flow and mixing within the TAG active hydrothermal mound using mineralogical and geochemical data. J. Geophys. Res. 100, 12527–12555 (1995).

    Article  Google Scholar 

  9. Von Damm, K. L. & Lilley, M. D. in The Subfloor Biosphere at Mid-Ocean Ridges (eds Wilcock, W. S. D., DeLong, E. F., Kelley, D. S., Baross, J. A. & Cary, S. C.) 245–268 (American Geophysical Union, 2004).

    Book  Google Scholar 

  10. Von Damm, K. L. et al. Evolution of East Pacific Rise hydrothermal vent fluids following a volcanic eruption. Nature 375, 47–50 (1995).

    Article  Google Scholar 

  11. Wheat, C. G. et al. Heat and fluid flow through a basaltic outcrop on a ridge flank. Geochem. Geophys. Geosyst. 5, Q12006 (2004).

    Google Scholar 

  12. Hutnak, M. et al. Large heat and fluid fluxes driven through mid-plate outcrops on ocean crust. Nature Geosci. 1, 611–614 (2008).

    Article  Google Scholar 

  13. Fisher, A. T. et al. Hydrothermal Vent recharge and discharge across 50 km guided by seamounts on a young ridge flank. Nature 421, 618–621 (2003).

    Article  Google Scholar 

  14. Huber, J. A., Butterfield, D. A. & Baross, J. A. Temporal changes in archaeal diversity and chemistry in a mid-ocean ridge subseafloor habitat. Appl. Environ. Microbiol. 68, 1585–1594 (2002).

    Article  Google Scholar 

  15. Chapelle, F. H. et al. A hydrogen-based subsurface microbial community dominated by methanogens. Nature 415, 312–315 (2002).

    Article  Google Scholar 

  16. Summit, M. & Baross, J. A. A novel microbial habitat in the mid-ocean ridge subseafloor. Proc. Natl Acad. Sci. USA 98, 2158–2163 (2001).

    Article  Google Scholar 

  17. Sogin, M. L. et al. Microbial diversity in the deep sea and the underexplored ‘rare biosphere’. Proc. Natl Acad. Sci. USA 103, 12115–12120 (2006).

    Article  Google Scholar 

  18. Huber, J. A., Butterfield, D. A., Johnson, H. P. & Baross, J. A. Microbial life in ridge flank crustal fluids. Environ. Microbiol. 8, 88–99 (2006).

    Article  Google Scholar 

  19. Edwards, K. J., Bach, W. & McCollom, T. M. Geomicrobiology in oceanography: Microbe-mineral interactions at and below the seafloor. Trends Microbiol. 13, 449–456 (2005).

    Article  Google Scholar 

  20. Butterfield, D. A. et al. Gradients in the composition of hydrothermal fluids from the Endeavor segment vent field: Phase separation and brine loss. J. Geophys. Res. 99, 9561–9583 (1994).

    Article  Google Scholar 

  21. Elderfield, H. & Schultz, A. Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean. Annu. Rev. Earth Planet. Sci. 24, 191–224 (1996).

    Article  Google Scholar 

  22. Schultz, A., Delaney, J. R. & McDuff, R. E. On the partitioning of heat flux between diffuse and point source seafloor venting. J. Geophys. Res. 97, 12299–12315 (1992).

    Article  Google Scholar 

  23. Butterfield, D. A. et al. in The Subseafloor Biosphere at Mid-Ocean Ridges (eds Wilcock, W.S.D., DeLong, E.F., Kelley, D.S., Baross, J.A. & Cary, S.C.) 269–289 (American Geophysical Union, 2004).

    Book  Google Scholar 

  24. Johnson, K. S., Beehler, C. L., Sakamoto-Arnold, C. M. & Childress, J. J. In situ measurements of chemical distributions in a deep-sea hydrothermal vent field. Science 213, 1139–1141 (1986).

    Article  Google Scholar 

  25. Le Bris, N., Govenar, B., Le Gall, C. & Fisher, C. R. Jr Variability of physico-chemical conditions in 9 °50′ N EPR diffuse flow vent habitats. Mar. Chem. 98, 167–182 (2006).

    Article  Google Scholar 

  26. Proskurowski, G., Lilley, M. D. & Olson, E. J. Stable isotopic evidence in support of active microbial methane cycling in low-temperature diffuse flow vents at 9 °50′ N East Pacific Rise. Geochim. Cosmochim. Acta 72, 2005–2023 (2008).

    Article  Google Scholar 

  27. Walker, B. D., McCarthy, M. D., Fisher, A. T. & Guilderson, T. P. Dissolved inorganic carbon isotopic composition of low-temperature axial and ridge-flank hydrothermal fluids of the Juan de Fuca Ridge. Mar. Chem. 108, 123–136 (2008).

    Article  Google Scholar 

  28. Ding, K. et al. The in situ pH of hydrothermal fluids at mid-ocean ridges. Earth Planet. Sci. Lett. 237, 167–174 (2005).

    Article  Google Scholar 

  29. Seewald, J. S., Cruse, A. & Saccocia, P. Aqueous volatiles in hydrothermal fluids from the Main Endeavor Field, northern Juan de Fuca Ridge: Temporal variability following earthquake activity. Earth Planet. Sci. Lett. 216, 575–590 (2003).

    Article  Google Scholar 

  30. Seyfried, W. E. Jr, Seewald, J. S., Berndt, M. E., Ding, K. & Foustoukos, D. I. Chemistry of hydrothermal vent fluids from the Main Endeavor Field, northern Juan de Fuca Ridge: Geochemical controls in the aftermath of June 1999 seismic events. J. Geophys. Res. 108, 2429–2452 (2003).

    Article  Google Scholar 

  31. Tivey, M. A. & Johnson, H. P. Crustal magnetization reveals subsurface structure of Juan de Fuca Ridge hydrothermal vent fields. Geology 30, 979–982 (2002).

    Article  Google Scholar 

  32. Sarrazin, J. et al. A dual sensor device to estimate fluid flow velocity at diffuse hydrothermal vents. Deep-Sea Res. I 56, 2065–2074 (2009).

    Article  Google Scholar 

  33. Ramondenc, P., Germanovich, L. N., Von Damm, K. L. & Lowell, R. P. The first measurements of hydrothermal heat output at 9 °50′ N, East Pacific Rise. Earth Planet. Sci. Lett. 245, 487–497 (2006).

    Article  Google Scholar 

  34. Rona, P. A. & Trivett, D. Discrete and diffuse heat transfer at Ashes vent field, Axial Volcano, Juan de Fuca Ridge. Earth Planet. Sci. Lett. 109, 57–71 (1992).

    Article  Google Scholar 

  35. Veirs, S. R., McDuff, R. E. & Stahr, F. R. Magnitude and variance of near-bottom horizontal heat flux at the Main Endeavor hydrothermal vent field. Geochem. Geophys. Geosyst. 7, Q02004 (2006).

    Article  Google Scholar 

  36. Foustoukos, D. I., Pester, N. J., Ding, K. & Seyfried, C. F. Dissolved carbon species in associated diffuse and focused flow hydrothermal vents at the Main Endeavor Field, Juan de Fuca Ridge: Phase equilibria and kinetic constraints. Geochem. Geophys. Geosyst. 10, Q10003 (2009).

    Article  Google Scholar 

  37. Zeebe, R. E. & Wolf-Gladrow, D. CO2 in Seawater: Equilibrium, Kinetics, Isotopes (Elsevier, 2001).

    Google Scholar 

  38. Girguis, P. R. & Childress, J. J. Metabolite uptake, stoichiometry and chemoautotrophic function of the hydrothermal vent tubeworm Riftia pachyptila: Responses to environmental variations in substrate concentrations and temperature. J. Exp. Biol. 209, 3516–3528 (2006).

    Article  Google Scholar 

  39. Nyholm, S. V., Robidart, J. & Girguis, P. R. Coupling metabolite flux to transcriptomics: Insights into the molecular mechanisms underlying primary productivity by the hydrothermal vent tubeworm Ridgeia piscesae. Biol. Bull. 214, 255–265 (2008).

    Article  Google Scholar 

  40. Shock, E.L. & Holland, M. E. in The Subseafloor Biosphere at Mid-Ocean Ridges (eds Wilcock, W.S.D., DeLong, E.F., Kelley, D.S., Baross, J.A. & Cary, S.C.) 153–166 (American Geophysical Union, 2004).

    Book  Google Scholar 

  41. Reysenbach, A-L. & Shock, E. L. Merging genomes with geochemistry in hydrothermal ecosystems. Science 296, 1077–1082 (2002).

    Article  Google Scholar 

  42. Perner, M., Peterson, J. M., Zielinski, F., Gennerich, H-H. & Seifert, R. Geochemical constraints on the diversity and activity of H2-oxidizing microorganisms in diffuse hydrothermal fluids from a basalt- and ultramafic-hosted vent. FEMS Microbiol. Ecol. 74, 55–71 (2010).

    Article  Google Scholar 

  43. Proskurowski, G., Lilley, M. D. & Brown, T. Isotopic evidence of magmatism and seawater bicarbonate removal at the Endeavor hydrothermal system. Earth Planet. Sci. Lett. 225, 53–61 (2004).

    Article  Google Scholar 

  44. Arp, A. J. & Childress, J. J. Sulfide binding by the blood of the hydrothermal vent tube worm Riftia pachyptila. Science 219, 295–297 (1983).

    Article  Google Scholar 

  45. Crank, J. The Mathematics of Diffusion 2nd edn (Clarendon, 1975).

    Google Scholar 

  46. LaPack, M. A., Tou, J. C. & Enke, C. G. Membrane mass spectrometry for the direct trace analysis of volatile organic compounts in air and water. Anal. Chem. 62, 1265–1271 (1990).

    Article  Google Scholar 

  47. Pinnau, I. & Toy, L. G. Gas and vapour transport properties of amorphous perfluorinated copolymer membranes based on 2,2-bistrifluoromethyl- 4,5-difluoro- 1,3-dioxole/tetrafluoroethylene. J. Membrane Sci. 109, 125–133 (1996).

    Article  Google Scholar 

  48. Camilli, R. & Duryea, A. N. Characterizing spatial and temporal variability of dissolved gases in aquatic environments with in situ mass spectrometry. Environ. Sci. Technol. 43, 5014–5021 (2009).

    Article  Google Scholar 

  49. Edmond, J. M., Massoth, G. J. & Lilley, M. D. Submersible-deployed samples for axial vent waters. RIDGE Events 3, 23–24 (1992).

    Google Scholar 

  50. Germanovich, L. N. et al. Direct measurements of hydrothermal heat output at Juan de Fuca Ridge. EOS Trans. (Fall Meeting Suppl.) 90 abstr. OS13A-1179 (2009).

Download references

Acknowledgements

We would like to thank the R/V Atlantis crew and the DSV Alvin crew. Special thanks to S. Kelley and B. Strickrott for their assistance with the in situ mass spectrometer and flowmeter during deployment, as well as J. Robidart and B. Orcutt, who served as DSV Alvin chief scientists and collected ISMS data on dives 4419 and 4420. Special thanks go to R. Hurt and R. Lowell for their help in the design and calibration of the flowmeter. Helpful comments, useful discussion and assistance in the lab were provided by S. Shah, D. Johnston and C.H. Wankel. We are also grateful to J. Melas-Kyriazi for providing assistance with data management. Support for this research was provided, in part, by NSF OCE-0838107 and NASA-ASTEP grant no. 0910169 to P.R.G. and NSF OCE-0937057 to L.N.G.

Author information

Authors and Affiliations

Authors

Contributions

S.D.W. and P.R.G. designed, built and calibrated the ISMS and conceived the experiment; S.D.W., L.N.G. and P.R.G. carried out the field deployment and measurements; S.D.W. analysed and interpreted ISMS data; L.N.G. and G.G. analysed flowmeter data; M.D.L., E.J.O. and C.J.D. provided assistance with calibration; M.D.L., A.S.B., E.J.O. and P.R.G. provided assistance with data analysis and interpretation; S.D.W. and P.R.G. wrote the manuscript.

Corresponding authors

Correspondence to Scott D. Wankel or Peter R. Girguis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 527 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wankel, S., Germanovich, L., Lilley, M. et al. Influence of subsurface biosphere on geochemical fluxes from diffuse hydrothermal fluids. Nature Geosci 4, 461–468 (2011). https://doi.org/10.1038/ngeo1183

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo1183

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology