Slow release of fossil carbon during the Palaeocene–Eocene Thermal Maximum

Journal name:
Nature Geoscience
Volume:
4,
Pages:
481–485
Year published:
DOI:
doi:10.1038/ngeo1179
Received
Accepted
Published online

Abstract

The transient global warming event known as the Palaeocene–Eocene Thermal Maximum occurred about 55.9Myr ago. The warming was accompanied by a rapid shift in the isotopic signature of sedimentary carbonates, suggesting that the event was triggered by a massive release of carbon to the ocean–atmosphere system. However, the source, rate of emission and total amount of carbon involved remain poorly constrained. Here we use an expanded marine sedimentary section from Spitsbergen to reconstruct the carbon isotope excursion as recorded in marine organic matter. We find that the total magnitude of the carbon isotope excursion in the ocean–atmosphere system was about 4‰. We then force an Earth system model of intermediate complexity to conform to our isotope record, allowing us to generate a continuous estimate of the rate of carbon emissions to the atmosphere. Our simulations show that the peak rate of carbon addition was probably in the range of 0.3–1.7PgCyr−1, much slower than the present rate of carbon emissions.

At a glance

Figures

  1. Study area.
    Figure 1: Study area.

    a, Location map showing Palaeogene deposits in Spitsbergen. The red square represents the location of the study area near Sveagruva and Urdkollbreen. The drill core (BH9-05) site is located on the eastern margin of the Palaeogene Central Basin (77°50′N,16°30′E). b, Stratigraphy of the Van Mijenfjorden Group (modified from refs 16 and 17). Core BH9-05 is shown as a red rectangle, which spans the Palaeocene/Eocene boundary. The geochemical and isotopic analyses in this study are from the blue highlighted interval.

  2. Geochemical profiles throughout the PETM from core BH9-05 in Spitsbergen.
    Figure 2: Geochemical profiles throughout the PETM from core BH9-05 in Spitsbergen.

    a, Carbon isotopes of total organic carbon (δ13CTOC). b, Pristane and phytane ratio denoted by Pr/Ph. c, Weight percentage of total organic carbon (wt% TOC), red dots are from this study, whereas blue dots are from ref. 18. d, Corg/Nbulk atomic ratio. eδ15N (‰) of bulk decarbonated sediment.

  3. Filtered records of core BH9-05 in the depth domain modified from ref. 
.
    Figure 3: Filtered records of core BH9-05 in the depth domain modified from ref.  2.

    aδ13CTOC (‰) from this study. b, Core BH9-05 Log Fe (red) and Mn (blue) time series. c, Log Fe and Mn 4.2m (0.24±0.07cyclesm−1) Gaussian filter output. Numbered cycles were interpreted as precession cycles and tuned to the Log Fe record from ODP Site 1263 (ref. 1) to derive the age model used in this study (Option A of ref. 2). d, Log Fe and Mn 20m (0.05±0.01cyclesm−1) filter, inferred to represent the short (~100kyr) component of orbital forcing.

  4. Model results of the PETM carbon release rate and cumulative amount of carbon added versus time from the onset of the CIE (535[thinsp]mbs) (age model is from ref. 
).
    Figure 4: Model results of the PETM carbon release rate and cumulative amount of carbon added versus time from the onset of the CIE (535mbs) (age model is from ref.  2).

    aδ13Catm that we used to force GENIE. b, Model results of the PETM carbon release rate. c, Model results of the cumulative amount of carbon added. d, Model results of the PETM atmospheric pCO2. e, Model results of the PETM global average temperature (°C). The two best-fit simulations are shown in be:(1) CH4 simulation (black solid line); (2) Corg simulation (red dotted line). Both simulations are with bioturbation on.

References

  1. Röhl, U., Westerhold, T., Bralower, T. J. & Zachos, J. C. On the duration of the Paleocene–Eocene Thermal Maximum (PETM). Geochem. Geophys. Geosyst. 8, Q12002 (2007).
  2. Charles, A. J. et al. Constraints on the numerical age of the Paleocene–Eocene boundary. Geochem. Geophys. Geosyst. doi:10.1029/2010GC003426 (in the press).
  3. Sluijs, A. et al. Subtropical Arctic Ocean temperatures during the Palaeocene/Eocene Thermal Maximum. Nature 441, 610613 (2006).
  4. Zachos, J. C. et al. A transient rise in tropical sea surface temperature during the Paleocene–Eocene Thermal Maximum. Science 302, 15511554 (2003).
  5. Pagani, M., Caldeira, K., Archer, D. & Zachos, J. C. An ancient carbon mystery. Science 314, 15561557 (2006).
  6. Zachos, J. C. et al. Rapid acidification of the ocean during the Paleocene–Eocene Thermal Maximum. Science 308, 16111615 (2005).
  7. Colosimo, A., Bralower, T. & Zachos, J. Proceedings of the Ocean Drilling Program, Scientific Results Vol. 198 (2006).
  8. Dickens, G. R., O’Neil, J. R., Rea, D. K. & Owen, R. M. Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene. Paleoceanography 10, 965971 (1995).
  9. Zeebe, R. E., Zachos, J. C. & Dickens, G. R. Carbon dioxide forcing alone insufficient to explain Palaeocene–Eocene Thermal Maximum warming. Nature Geosci. 2, 576580 (2009).
  10. Kurtz, A. C., Kump, L. R., Arthur, M. A., Zachos, J. C. & Paytan, A. Early Cenozoic decoupling of the global carbon and sulfur cycles. Paleoceanography 18, 1090 (2003).
  11. Higgins, J. & Schrag, D. Beyond methane: Towards a theory for the Paleocene–Eocene Thermal Maximum. Earth Planet. Sci. Lett. 245, 523537 (2006).
  12. Svensen, H. et al. Release of methane from a volcanic basin as a mechanism for initial Eocene global warming. Nature 429, 542545 (2004).
  13. Kelly, D. C., Nielsen, T. M. J., McCarren, H. K., Zachos, J. C. & Röhl, U. Spatiotemporal patterns of carbonate sedimentation in the South Atlantic: Implications for carbon cycling during the Paleocene–Eocene thermal maximum. Palaeogeogr. Palaeoclimatol. Palaeoecol. 293, 3040 (2010).
  14. Walker, J. & Kasting, J. Effects of fuel and forest conservation on future levels of atmospheric carbon dioxide. Palaeogeogr. Palaeoclimatol. Palaeoecol. 97, 151189 (1992).
  15. Dickens, G. R., Castillo, M. M. & Walker, J. C. G. A blast of gas in the latest Paleocene; simulating first-order effects of massive dissociation of oceanic methane hydrate. Geology 25, 259262 (1997).
  16. Uroza, C. A. & Steel, R. J. A highstand shelf-margin delta system from the Eocene of West Spitsbergen, Norway. Sedim. Geol. 203, 229245 (2008).
  17. Bruhn, R. & Steel, R. High-resolution sequence stratigraphy of a clastic foredeep succession (Paleocene, Spitsbergen): An example of peripheral-bulge-controlled depositional architecture. J. Sedim. Res. 73, 745755 (2003).
  18. Riber, L. Paleogene Depositional Conditions and Climatic Changes of the Frysjaodden Formation in Central Spitsbergen (Sedimentology and Mineralogy) Unpublished Master thesis, Univ. Oslo (2009), p. 112.
  19. Dypvik, H. et al. The Paleocene–Eocene Thermal Maximum (PETM) in Svalbard—clay mineral and geochemical signals. Palaeogeogr. Palaeoclimatol. Palaeoecol. 302, 156169 (2011).
  20. Harding, I. C. et al. Sea-level and salinity fluctuations during the Paleocene–Eocene Thermal Maximum in Arctic Spitsbergen. Earth Planet. Sci. Lett. 303, 97107 (2011).
  21. Hughes, W., Holba, A. & Dzou, L. The ratios of dibenzothiophene to phenanthrene and pristane to phytane as indicators of depositional environment and lithology of petroleum source rocks. Geochim. Cosmochim. Acta 59, 35813598 (1995).
  22. Didyk, B. M., Simoneit, B. R. T., Brassell, S. C. & Eglinton, G. Organic geochemical indicators of palaeoenvironmental conditions of sedimentation. Nature 272, 216222 (1978).
  23. Leithold, E. L., Blair, N. E. & Perkey, D. W. Geomorphologic controls on the age of particulate organic carbon from small mountainous and upland rivers. Glob. Biogeochem. Cycles 20, GB3022 (2006).
  24. Helland-Hansen, W. Sedimentation in Paleogene foreland basin, Spitsbergen. AAPG Bull. 74, 260272 (1990).
  25. Panchuk, K., Ridgwell, A. & Kump, L. R. Sedimentary response to Paleocene–Eocene Thermal Maximum carbon release: A model-data comparison. Geology 36, 315318 (2008).
  26. Robinson, S. A. Shallow-water carbonate record of the Paleocene–Eocene Thermal Maximum from a Pacific Ocean guyot. Geology 39, 5154 (2011).
  27. Le Quéré, C. et al. Trends in the sources and sinks of carbon dioxide. Nature Geosci. 2, 831836 (2009).
  28. Bowen, G. J. & Zachos, J. C. Rapid carbon sequestration at the termination of the Palaeocene–Eocene Thermal Maximum. Nature Geosci. 3, 866869 (2010).
  29. Svensen, H., Planke, S. & Corfu, F. Zircon dating ties NE Atlantic sill emplacement to initial Eocene global warming. J. Geol. Soc. 167, 433436 (2010).
  30. Coplen, T. B. et al. New guidelines for 13C measurements. Anal. Chem. 78, 24392441 (2006).
  31. Ridgwell, A. Interpreting transient carbonate compensation depth changes by marine sediment core modeling. Paleoceanography 22, PA4102 (2007).
  32. Ridgwell, A. & Hargreaves, J. C. Regulation of atmospheric CO2 by deep-sea sediments in an Earth system model. Glob. Biogeochem. Cycles 21, GB2008 (2007).
  33. Bice, K. L., Barron, E. J. & Peterson, W. H. in Tectonic Boundary Conditions for Climate Reconstructions (eds Crowley, T. & Burke, K.) 227247 (Oxford Univ. Press, 1998).
  34. Zachos, J. C. Trends, rhythms, and aberrations in global climate 65Myr to present. Science 292, 686693 (2001).
  35. Berner, R. A. A model for atmospheric CO2 over Phanerozoic time. Am. J. Sci. 291, 339376 (1991).
  36. Cerling, T. Carbon dioxide in the atmosphere: Evidence from Cenozoic and Mesozoic paleosols. Am. J. Sci. 291, 377400 (1991).
  37. Koch, P., Zachos, J. & Gingerich, P. Correlation between isotope records in marine and continental carbon reservoirs near the Paleocene/Eocene boundary. Nature 358, 319322 (1992).
  38. Shellito, C., Sloan, L. & Huber, M. Climate model sensitivity to atmospheric CO2 levels in the Early–Middle Paleogene. Palaeogeogr. Palaeoclimatol. Palaeoecol. 193, 113123 (2003).
  39. Pagani, M., Zachos, J., Freeman, K., Tipple, B. & Bohaty, S. Marked decline in atmospheric carbon dioxide concentrations during the Paleogene. Science 309, 600603 (2005).
  40. Smith, F., Wing, S. & Freeman, K. Magnitude of the carbon isotope excursion at the Paleocene–Eocene Thermal Maximum: The role of plant community change. Earth Planet. Sci. Lett. 262, 5065 (2007).
  41. Broecker, W. & Peng, T. Tracers in the Sea (Eldigio, 1982).

Download references

Author information

Affiliations

  1. Department of Geosciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA

    • Ying Cui,
    • Lee R. Kump,
    • Christopher K. Junium,
    • Aaron F. Diefendorf,
    • Katherine H. Freeman &
    • Nathan M. Urban
  2. School of Geographical Sciences, University of Bristol, University Road, Bristol BS8 1SS, UK

    • Andy J. Ridgwell
  3. School of Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, European Way, Southampton SO14 3ZH, UK

    • Adam J. Charles &
    • Ian C. Harding
  4. Present address: Department of Earth and Planetary Science, Northwestern University, Evanston, Illinois 60208, USA

    • Christopher K. Junium
  5. Present address: Department of Geology, University of Cincinnati, Cincinnati, Ohio 45221, USA

    • Aaron F. Diefendorf
  6. Present address: Woodrow Wilson School of Public and International Affairs, Princeton University, Princeton, New Jersey 08544, USA

    • Nathan M. Urban

Contributions

L.R.K., Y.C. and A.J.R. designed the research. Y.C. carried out all the model simulations. Y.C., C.K.J. and A.F.D. conducted geochemical analyses. Y.C. and L.R.K. wrote the paper with contributions from A.J.C., C.K.J. and A.F.D. All authors contributed to interpretation of data.

Competing financial interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to:

Author details

Supplementary information

PDF files

  1. Supplementary Information (4.10MB)

    Supplementary Information

Additional data