Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Enigmatic origin of the largest-known carbon isotope excursion in Earth's history

Abstract

Carbonate rocks from the Middle Ediacaran period in locations all over the globe record the largest excursion in carbon isotopic compositions in Earth history. This finding suggests a dramatic reorganization of Earth's carbon cycle. Named the Shuram excursion for its original discovery in the Shuram Formation, Oman, the anomaly closely precedes impressive events in evolution, including the rise of large metazoans and the origin of biomineralization in animals. Instead of a true record of the carbon cycle at the time of sedimentation, the carbon isotope signature recorded in the Shuram excursion could be caused by alteration following deposition of the carbonate sediments, a scenario supported by several geochemical indicators. However, such secondary processes are intrinsically local, which makes it difficult to explain the coincident occurrence of carbon isotope anomalies in numerous records around the globe. Both possibilities are intriguing: if the Shuram excursion preserves a genuine record of ancient seawater chemistry, it reflects a perturbation to the carbon cycle that is stronger than any known perturbations of the modern Earth. If, however, it represents secondary alteration during burial of sediments, then marine sediments must have been globally preconditioned in a unique way, to allow ordinary and local processes to produce an extraordinary and widespread response.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Historical variability of carbon isotopic composition of sedimentary rocks.
Figure 2: Palaeogeographic map (600 Myr ago) showing global distribution of the SE.
Figure 3: Magnitude and asymmetry of SE.
Figure 4: Representative depositional facies from strata that preserve the SE.
Figure 5: Geochemical cross plots of SE sections. Paired isotopic data are shown from Oman, South China and South Australia.

Similar content being viewed by others

References

  1. Kump, L. R. & Arthur, M. A. Interpreting carbon-isotope excursions: carbonates and organic matter. Chem. Geol. 161, 181–198 (1999).

    Google Scholar 

  2. Fike, D. A., Grotzinger, J. P., Pratt, L. M. & Summons, R. E. Oxidation of the Ediacaran Ocean. Nature 444, 744–747 (2006).

    Google Scholar 

  3. Holland, H. D. The Chemical Evolution of the Atmosphere and Oceans (Princeton Univ. Press, 1984).

    Google Scholar 

  4. Schidlowski, M. A 3,800-million-year isotopic record of life from carbon in sedimentary rocks. Nature 333, 313–318 (1988).

    Google Scholar 

  5. Holser, W. T., Schidlowski, M., Mackenzie, F. T. & Maynard, J. B. in Chemical Cycles in the Evolution of the Earth (eds Gregor, C. B., Garrels, R. M., Mackenzie, F. T. & Maynard, J. B.) 105–173 (Wiley, 1988).

    Google Scholar 

  6. Des Marais, D. J. et al. in The Proterozoic Biosphere: A Multidisciplinary Study (eds Schopf, W. J. & Klein, C.) 325–334 (Cambridge Univ. Press, 1992).

    Google Scholar 

  7. Hayes, J. M., Strauss, H. & Kaufman, A. J. The abundance of C-13 in marine organic matter and isotopic fractionation in the global biogeochemical cycle of carbon during the past 800 Ma. Chem. Geol. 161, 103–125 (1999).

    Google Scholar 

  8. Hoffman, P. F., Kaufman, A. J., Halverson, G. P. & Schrag, D. P. A Neoproterozoic Snowball Earth. Science 281, 1342–1346 (1998).

    Google Scholar 

  9. Rothman, D. H., Hayes, J. M. & Summons, R. E. Dynamics of the Neoproterozoic carbon cycle. Proc. Natl Acad. Sci. USA 100, 8124–8129 (2003).

    Google Scholar 

  10. Sageman, B. B. et al. A tale of shales: the relative roles of production, decomposition, and dilution in the accumulation of organic-rich strata, Middle-Upper Devonian, Appalachian basin. Chem. Geol. 195, 229–273 (2003).

    Google Scholar 

  11. Berner, R. A. &. Raiswell, R. Burial of organic carbon and pyrite sulfur in sediments over Phanerozoic time: a new theory. Geochem. Cosmochim. Acta 47, 855–862 (1983).

    Google Scholar 

  12. Knoll, A. H., Hayes, J. M., Kaufman, A. J., Swett, K. & Lambert, I. B. Secular variation in carbon isotope ratios from Upper Proterozoic successions of Svalbard and East Greenland. Nature 321, 832–838 (1986).

    Google Scholar 

  13. Fike, D. A. & Grotzinger, J. P. A paired sulfate-pyrite δ34S approach to understanding the evolution of the Ediacaran-Cambrian sulfur cycle. Geochem. Cosmochim. Acta 72, 2636–2648 (2008).

    Google Scholar 

  14. Higgins, J. A., Fischer, W. W. & Schrag, D. P. Oxygenation of the ocean and sediments: consequences for the seafloor carbonate factory. Earth Planet. Sci. Lett. 284, 25–33 (2009).

    Google Scholar 

  15. Fischer, W. W. et al. Isotopic constraints on the Late Archean carbon cycle from the Transvaal Supergroup along the western margin of the Kaapvaal Craton, South Africa. Precambr. Res. 169, 15–27 (2009).

    Google Scholar 

  16. Knoll, A. H. & Carroll, S. B. Early animal evolution: emerging views from comparative biology and geology. Science 284, 2129–2137 (1999).

    Google Scholar 

  17. Halverson, G. P., Maloof, A. C. & Hoffman, P. F. Towards a Neoproterozoic composite carbon-isotope record. Geol. Soc. Am. Bull. 117, 1181–1207 (2005).

    Google Scholar 

  18. Saltzman, M. R. in A Geologic Time Scale (Cambridge Univ. Press, in the press).

  19. Shields, G. & Veizer, J. Precambrian marine carbonate isotope database: version 1.1. Geochem. Geophys. Geosyst. 3, 1031 (2002).

    Google Scholar 

  20. Payne, J. L. et al. Large perturbations of the carbon cycle during recovery from the end-Permian extinction. Science 305, 506–509 (2004).

    Google Scholar 

  21. Maloof, A. C., Schrag, D. P., Crowley, J. L. & Bowring, S. A. An expanded record of Early Cambrian carbon cycling from the Anti-Atlas Margin, Morocco. Can. J. Earth Sci. 42, 2195–2216 (2005).

    Google Scholar 

  22. Zachos, J. C., Dickens, G. R. & Zeebe, R. E. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451, 279–283 (2008).

    Google Scholar 

  23. Holser, W. T. Catastrophic chemical events in the history of the ocean. Nature 267, 403–408 (1977).

    Google Scholar 

  24. Grotzinger, J. P., Bowring, B. Z., Saylor, B. Z. & Kaufman, A. J. Biostratigraphic and geochronologic constraints on early animal evolution. Science 270, 598–604 (1995).

    Google Scholar 

  25. Amthor, J. E. et al. Extinction of Cloudina and Namacalathus at the Precambrian-Cambrian boundary in Oman. Geology 31, 431–434 (2003).

    Google Scholar 

  26. Maloof, A. C. et al. The earliest Cambrian record of animals and ocean geochemical change. Geol. Soc. Am. Bull. 122, 1731–1774 (2010).

    Google Scholar 

  27. Pell, S. D., McKirdy, D. M., Jansyn, J. & Jenkins, R. J. F. Ediacaran carbon isotope stratigraphy of South Australia. Trans. R. Soc. South Aust. 117, 153–161 (1993).

    Google Scholar 

  28. Burns, S. J. & Matter, A. Carbon isotopic record of the latest Proterozoic from Oman. Eclogae Geol. Helv. 86, 595–607 (1993).

    Google Scholar 

  29. Narbonne, G. M., Kaufman, A. J. & Knoll, A. H. Integrated chemostratigraphy and biostratigraphy of the Windermere Supergroup, northwestern Canada: implications for Neoproterozoic correlations and the evolution of animals. Geol. Soc. Am. Bull. 106, 1281–1292 (1994).

    Google Scholar 

  30. Brasier, M. D., Shields, G., Kuleshov, V. N. & Zhegallo, E. A. Integrated chemo- and biostratigraphic calibration of early animal evolution: Neoproterozoic-early Cambrian of southwest Mongolia. Geol. Mag. 133, 445–485 (1996).

    Google Scholar 

  31. Saylor, B. Z., Kaufman, A. J., Grotzinger, J. P. & Urban, F. A composite reference section for terminal Proterozoic strata of southern Namibia. J. Sedim. Res. 66, 1178–1195 (1998).

    Google Scholar 

  32. Le Guerroue, E., Allen, P. A. & Cozzi, A. Chemostratigraphic and sedimentological framework of the largest negative carbon isotopic excursion in Earth history: the Neoproterozoic Shuram Formation (Nafun Group, Oman). Precambr. Res. 146, 68–92 (2006).

    Google Scholar 

  33. Le Guerroue, E., Allen, P. A., Cozzi, A., Etienne, J. L. & Fanning, M. 50 million year duration negative carbon isotope excursion in the Ediacaran ocean. Terra Nova 18, 147–153 (2006).

    Google Scholar 

  34. Bowring, S. A. et al. Geochronologic constraints on the chronostratigraphic framework of the Neoproterozoic Huqf Supergroup, sultanate of Oman. Am. J. Sci. 307, 1097–1145 (2007).

    Google Scholar 

  35. Corsetti, F. A. & Kaufman, A. J. Stratigraphic investigations of carbon isotope anomalies and Neoproterozoic ice ages in Death Valley, California. Geol. Soc. Am. Bull. 115, 916–932 (2003).

    Google Scholar 

  36. Kaufman, A. J., Corsetti, F. A. & Varni, M. A. The effect of rising atmospheric oxygen on carbon and sulfur isotope anomalies in the Neoproterozoic Johnnie Formation, Death Valley, USA. Chem. Geol. 237, 47–63 (2007).

    Google Scholar 

  37. Verdel, C., Wernicke, B. P. & Bowring, S. A. The Shuram and subsequent Ediacaran carbon isotope excursions from southwest Laurentia, and implications for environmental stability during the metazoan radiation. Geol. Soc. Am. Bull. 10.1130/B30369.1 (in the press).

  38. Condon, D. et al. U-Pb ages from the Neoproterozoic Doushantuo Formation, China. Science 308, 95–98 (2005).

    Google Scholar 

  39. Jiang, G., Kaufman, A. J., Christie-Blick, N., Zhang, S. & Wu, H. Carbon isotope variability across the Ediacaran Yangtze platform in South China: implications for a large surface-to-deep ocean δ13C gradient. Earth Planet. Sci. Lett. 261, 303–320 (2007).

    Google Scholar 

  40. McFadden, K. A. et al. Pulsed oxidation and biological evolution in the Ediacaran Doushantuo Formation. Proc. Natl Acad. Sci. USA 105, 3197–3202 (2008).

    Google Scholar 

  41. Calver, C. R. Isotope stratigraphy of the Ediacarian (Neoproterozoic III) of the Adelaide Rift Complex, Australia, and the overprint of water column stratification. Precambr. Res. 100, 121–150 (2000).

    Google Scholar 

  42. Macdonald, F. A., Jones, D. S. & Schrag, D. P. Stratigraphic and tectonic implications of a newly discovered glacial diamictite-cap carbonate couplet in southwestern Mongolia. Geology 37, 123–126 (2009).

    Google Scholar 

  43. Melezhik, V. A., Fallick, A. E. & Kuznetsov, A. B. Palaeoproterozoic, rift-related, 13C-rich, lacustrine carbonates, NW Russia—Part II: Global isotope signal recorded in the lacustrine dolostones. Earth Sci. 95, 423–444 (2005).

    Google Scholar 

  44. Prave, A. R., Fallick, A. E., Thomas, C. W. & Graham, C. M. A composite C-isotope profile for the Neoproterozoic Dalradian Supergroup of Scotland and Ireland. J. Geol. Soc. 166, 845–857 (2009).

    Google Scholar 

  45. Canfield, D. E., Poulton, S. W. & Narbonne, G. M. Late-Neoproterozoic deep-ocean oxygenation and the rise of animal life. Science 315, 92–95 (2007).

    Google Scholar 

  46. Sperling, E. A., Pisani, D. & Peterson, K. J. in The Rise and Fall of the Ediacaran Biota (eds Vickers-Rich, P. & Komarower, P.) 355–368 (The Geological Society Special Publications, 2007).

    Google Scholar 

  47. McCarron, M. E. G. The Sedimentology and Chemostratigraphy of the Nafun Group, Huqf Supergroup, Oman PhD thesis, Oxford Univ. (2000).

    Google Scholar 

  48. Knauth, L. P. & Kennedy, M. J. The late Precambrian greening of the Earth. Nature 460, 728–732 (2009).

    Google Scholar 

  49. Derry, L. A. A burial diagenesis origin for the Ediaacaran Shuram-Wonoka carbon isotope anomaly. Earth Planet. Sci. Lett. 294, 152–162 (2010).

    Google Scholar 

  50. Hagadorn, J. W. & Waggoner, B. M. in Abstracts with Programs, Annual Meeting Vol. 30, 233 (Geological Society of America, 1998).

    Google Scholar 

  51. Kaufman, A. J., Jiang, G., Christie-Blick, N., Banerjee, D. & Rai, V. Stable isotope record of the terminal Neoproterozoic Krol platform in the Lesser Himalayas of northern India. Precambr. Res. 147, 156–185 (2006).

    Google Scholar 

  52. Gaucher, C., Sial, A. N., Halverson, G. P. & Frimmel, H. E. in Neoproterozoic–Cambrian Tectonics, Global Change And Evolution: A Focus On South Western Gondwana (eds Gaucher, C., Sial, A. N., Frimmel, H. E. & Halverson, G. P.) Ch. 1, 3–11 (Developments in Precambrian Geology Vol. 16, Elsevier, 2009).

    Google Scholar 

  53. Pokrovskii, B. G., Melezhik, V. A. & Bujakaite, M. I. Carbon, oxygen, strontium, and sulfur isotopic compositions in Late Precambrian rocks of the Patom Complex, central Siberia: Communication 1. results, isotope stratigraphy, and dating problems. Lithol. Miner. Resour. 41, 450–474 (2006).

    Google Scholar 

  54. Summa, C. L. Sedimentologic, Stratigraphic, and Tectonic Controls of a Mixed Carbonate-Siliciclastic Succession: Neoproterozoic Johnnie Formation. Southeast California (Massachusetts Institute of Technology, 1993).

    Google Scholar 

  55. Haines, P. W. in The Evolution of a Late Precambrian–Early Palaeozoic Rift Complex, Adelaide Geosyncline (eds Jago, J. B. & Moore, P. S.) 177–198 (Geological Society of America Special Publication 16, 1990).

    Google Scholar 

  56. Kump, L. R. Interpreting carbon-isotope excursions, Strangelove oceans. Geology 19, 299–302 (1991).

    Google Scholar 

  57. Derry, L. A. On the significance of δ13C correlations in ancient sediments. Earth Planet. Sci. Lett. 296, 497–501 (2010).

    Google Scholar 

  58. Dehler, C. M. et al. High-resolution δ13C stratigraphy of the Chuar Group (ca. 770–742 Ma), Grand Canyon: Implications for mid-Neoproterozoic climate change. GSA Bull. 117, 32–45 (2005).

    Google Scholar 

  59. Bristow, T. F. & Kennedy, M. J. Carbon isotope excursions and the oxidant budget of the Ediacaran atmosphere and ocean. Geology 36, 863–866 (2008).

    Google Scholar 

  60. Bjerrum, C. J. & Canfield, D. E. Towards a quantitative understanding of the late Neoproterozoic carbon cycle. Proc. Natl Acad. Sci. USA 10.1073/pnas.1101755108 (2011).

  61. Brand, U. & Veizer, J. Chemical diagenesis of a multicomponent carbonate system-1: Trace elements. J. Sedim. Petrol. 50, 1219–1236 (1980).

    Google Scholar 

  62. Grover, G. Jr. & Read, J. F. Paleoaquifer and deep burial related cements defined by regional cathodoluminescent patterns, Middle Ordovician carbonates, Virginia. AAPG Bull. 67, 1275–1303 (1983).

    Google Scholar 

  63. Meyers, W. J. & Lohmann, K. C. in Carbonate Cements Vol. 36 (eds Schneiderman, N. & Harris, P. M.) 223–240 (Society of Economic Paleontologists and Mineralogists Special Publication, 1985).

    Google Scholar 

  64. Zempolich, W. G., Wilkinson, B. H. & Lohmann, K. C. Diagenesis of late Proterozoic carbonates: the Beck Spring Dolomite of eastern California. J. Sedim. Petrol. 58, 656–672 (1988).

    Google Scholar 

  65. Derry, L. A., Kaufman, A. J. & Jacobsen, S. B. Sedimentary cycling and environmental change in the Late Proterozoic: evidence from stable and radiogenic isotopes. Geochim. Cosmochim. Acta 56, 1317–1329 (1992).

    Google Scholar 

  66. Kaufman, P., Grotzinger, J. P. & McCormick, D. S. in Sedimentary Modeling: Computer Simulations and Methods for Improved Parameter Definition Vol. 233 (eds Franseen, E. K., Watney, W. L., Kendall, C. G. St. C. & Ross, W.) 489–508 (Kansas Geological Survey, 1991).

    Google Scholar 

  67. Asmeron, Y., Jacobsen, S. B., Knoll, A. H., Butterfield, N. J. & Swett, K. Strontium isotopic variations of Neoproterozoic seawater: implications for crustal evolution. Geochim. Cosmochim. Acta 55, 2883–2894 (1991).

    Google Scholar 

  68. Vogel, J. C. in Stable Isotopes and Plant Carbon–Water Relations (eds Ehleringer, J. R., Hall, A. E. & Farquhar, G. D.) 29–38 (Academic, 1993).

    Google Scholar 

  69. Swart, P. K. & Eberli, G. E. The nature of the δ13C of periplatform sediments: implications for stratigraphy and the global carbon cycle. Sedim. Geol. 175, 115–129 (2005).

    Google Scholar 

  70. Melim, L. A., Swart, P. K. & Malivia, R. G. in Subsurface Geology of Prograding Carbonate Platform Margin, Great Bahamas Bank Vol. 70 (ed. Ginsburg, R. N. ) 137–161 (SEPM Special Publication, 2001).

    Google Scholar 

  71. Gray, J., Chaloner, W. & Westoll, T. The microfossil record of early land plants: advances in understanding of early terrestrialization. Biol. Sci. 309, 167–195 (1985).

    Google Scholar 

  72. Steemans, P. & Wellman, C. H. in The Great Ordovician Biodiversification Event (eds Webby, B. et al.) 361–366 (Columbia Univ. Press, 2004).

    Google Scholar 

  73. Gensel, P. G. The earliest land plants. Annu. Rev. Ecol. Evol. Syst. 39, 459–477 (2008).

    Google Scholar 

  74. Arthur, M. A. Paleoceanographic events - recognition, resolution, and reconsideration. Rev. Geophys. Space Phys. 17, 1474–1494 (1979).

    Google Scholar 

  75. Moore, C. H. & Druckman, Y. D. Burial diagenesis and porosity evolution, Upper Jurassic Smackover, Arkansas and Louisiana. AAPG Bull. 65, 597–628 (1981).

    Google Scholar 

  76. Visser, W. Burial and thermal history of Proterozoic source rocks in Oman. Precambr. Res. 54, 15–36 (1991).

    Google Scholar 

  77. Terken, J. M. J. & Freewin, N. L. The Dhahaban petroleum system of Oman. AAPG Bull. 84, 523–544 (2000).

    Google Scholar 

  78. Terken, J. M. J., Frewin, N. L. & Indrelid, S. L. Petroleum systems of Oman: charge timing and risks. AAPG Bull. 85, 1817–1845 (2001).

    Google Scholar 

  79. Moldovanyi, E. P. & Walter, L. M. Regional trends in water chemistry, Smackover Fm., southwest Arkansas: geochemical and physical contents. AAPG Bull. 76, 864–894 (1992).

    Google Scholar 

  80. Heydari, H. & Moore, C. Burial diagenesis and thermochemical sulfate reduction, Smackover Formation, southeastern Mississippi salt basin. Geology 17, 1080–1084 (1989).

    Google Scholar 

  81. Pelechaty, S. M., Grotzinger, J. P., Kashirtsev, V. A. & Jerinovsky, V. P. Chemostratigraphic and sequence stratigraphic constraints on Vendian-Cambrian basin dynamics, northeast Siberian craton. J. Geol. 104, 543–564 (1996).

    Google Scholar 

  82. Knoll, A. H., Grotzinger, J. P., Kaufman, A. J. & Kolosov, P. Integrated approaches to terminal Proterozoic stratigraphy: an example from the Olenek uplift, northeastern Siberia. Precambr. Res. 73, 251–270 (1995).

    Google Scholar 

  83. Pelechaty, S. M., Kaufman, A. J. & Grotzinger, J. P. Evaluation of d13C isotope stratigraphy for intrabasinal correlation: Vendian strata of the Olenek uplift and Kharaulakh Mountains, Siberian platform, Russia. Geol. Soc. Am. Bull. 108, 992–1003 (1996).

    Google Scholar 

  84. Swanson-Hysell, N. L. et al. Cryogenian glaciation and the onset of carbon-isotope decoupling. Science 328, 608–611 (2010).

    Google Scholar 

  85. Krijgsman, W., Hilgen, F. J., Raffi, I., Sierro, F. J. & Wilson, D. S. Chronology, causes and progression of the Messinian salinity crisis. Nature 400, 652–655 (1999).

    Google Scholar 

  86. Alvarez, W. & Assaro, F. An extraterrestrial impact. Sci. Am. 263, 78–84 (1990).

    Google Scholar 

  87. Courtillot, V. Evolutionary Catastrophes: The Science of Mass Extinction (Cambridge Univ. Press, 1999).

    Google Scholar 

  88. Bowring, S. A. et al. U/Pb zircon geochronology and tempo of the end-Permian mass extinction. Science 280, 1039–1045 (1998).

    Google Scholar 

  89. Mundil, R., Ludwig, K. R., Metcalfe, I. & Renne, P. Age and timing of the Permian mass extinctions: U/Pb dating of closed-system zircons. Science 305, 1760–1763 (2004).

    Google Scholar 

  90. Hoffman, P. F. & Schrag, D. P. The Snowball Earth hypothesis: testing the limits of global change. Terra Nova 14, 129–155 (2002).

    Google Scholar 

  91. Banner, J. & Kaufman, J. The isotopic record of ocean chemistry and diagenesis preserved in non-luminescent brachiopods from Mississippian carbonate rocks, Illinois and Missouri. Bull. Geol. Soc. Am. 106, 1074–1082 (1994).

    Google Scholar 

  92. Braithwaite, C. & Montaggioni, L. The Great Barrier Reef: a 700,000 year diagenetic history. Sedimentology 56, 1591–1622 (2009).

    Google Scholar 

  93. Pelechaty, S. M., James, N. P., Kerans, C. & Grotzinger, J. P. A middle Proterozoic paleokarst unconformity and associated rocks, Elu Basin, northwest Canada. Sedimentology 38, 775–797 (1991).

    Google Scholar 

  94. Kenny, R. & Knauth, L. P. Stable isotope variations in the Neoproterozoic Beck Spring Dolomite and Mesoproterozoic Mescal Limestone paleokarst: implications for life on land in the Precambrian. GSA Bull. 113, 650–658 (2001).

    Google Scholar 

  95. Pisarevsky, S. A., Murphy, J. B., Cawood, P. A. & Collins, A. S. Late Neoproterozoic and Early Cambrian palaeogeography: models and problems 9–31 (The Geological Society Special Publications 294, 2008).

Download references

Acknowledgements

We thank the Agouron Institute and the NASA Astrobiology Institute for support. T. Raub helped with construction of Fig. 2. K. Bergmann supplied the image in Fig. 4b. M. Saltzman is acknowledged for sharing pre-publication composite carbon isotope data used to construct Fig. 1, and C. Verdel and B. Wernicke are thanked for sharing pre-publication data for the Johnnie Formation shown in Fig. 3. L.

Author information

Authors and Affiliations

Authors

Contributions

J.G., D.F. and W.F each contributed by writing the text, drafting the figures and participating in data analysis. These responsibilities were divided equally.

Corresponding author

Correspondence to John P. Grotzinger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grotzinger, J., Fike, D. & Fischer, W. Enigmatic origin of the largest-known carbon isotope excursion in Earth's history. Nature Geosci 4, 285–292 (2011). https://doi.org/10.1038/ngeo1138

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo1138

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing