Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Two contrasting Phanerozoic orogenic systems revealed by hafnium isotope data

Abstract

Two fundamentally different orogenic systems have existed on Earth throughout the Phanerozoic. Circum-Pacific accretionary orogens are the external orogenic system formed around the Pacific rim, where oceanic lithosphere semicontinuously subducts beneath continental lithosphere. In contrast, the internal orogenic system is found in Europe and Asia as the collage of collisional mountain belts, formed during the collision between continental crustal fragments. External orogenic systems form at the boundary of large underlying mantle convection cells, whereas internal orogens form within one supercell. Here we present a compilation of hafnium isotope data from zircon minerals collected from orogens worldwide. We find that the range of hafnium isotope signatures for the external orogenic system narrows and trends towards more radiogenic compositions since 550 Myr ago. By contrast, the range of signatures from the internal orogenic system broadens since 550 Myr ago. We suggest that for the external system, the lower crust and lithospheric mantle beneath the overriding continent is removed during subduction and replaced by newly formed crust, which generates the radiogenic hafnium signature when remelted. For the internal orogenic system, the lower crust and lithospheric mantle is instead eventually replaced by more continental lithosphere from a collided continental fragment. Our suggested model provides a simple basis for unravelling the global geodynamic evolution of the ancient Earth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Location of Phanerozoic internal versus external orogenic systems, based on a Jurassic reconstruction39.
Figure 2: Contrasting hafnium isotopic signature for Phanerozoic orogenic systems: external (a) and internal (b).
Figure 3: Contrasting geodynamic evolution of internal and external orogenic systems.

Similar content being viewed by others

References

  1. Coney, P. J. The Lachlan belt of eastern Australia and circum-Pacific tectonic evolution. Tectonophysics 214, 1–25 (1992).

    Article  Google Scholar 

  2. Collins, W. J. Slab pull, mantle convection, and Pangean assembly and dispersal. Earth Planet. Sci. Lett. 205, 225–237 (2003).

    Article  Google Scholar 

  3. Cawood, P. A. et al. Accretionary orogens through Earth history. Geol. Soc. Spec. Publ. 318, 1–36 (2009).

    Article  Google Scholar 

  4. Coney, P. J., Jones, D. L. & Monger, J. W. H. Cordilleran suspect terranes. Nature 288, 329–333 (1980).

    Article  Google Scholar 

  5. Howell, D.G., Jones, D.L., Cox, A. & Nur, A. (eds). Tectonostratigraphic Terranes of the Circum-Pacific Region. 581 (Earth Sciences Series 1, Circum-Pacific Council of Energy & Mineral Resources, 1985).

  6. Foster, D. A. & Grey, D. R. Evolution and structure of the Lachlan Fold Belt (Orogen) of eastern Australia. Annu. Rev. Earth Planet. Sci. 28, 47–80 (2000).

    Article  Google Scholar 

  7. Collins, W. J. Nature of extensional accretionary orogens. Tectonics 21/1024, 1–12 (2002).

    Google Scholar 

  8. Cawood, P. A. & Buchan, C. Linking accretionary orogenesis with supercontinent assembly. Earth Sci. Rev. 82, 217–256 (2007).

    Article  Google Scholar 

  9. Murphy, J. B. & Nance, R. D. Supercontinent model for the contrasting character of Late Proterozoic orogenic belts. Geology 19, 469–472 (1991).

    Article  Google Scholar 

  10. Sengor, A. M. C., Altiner, D., Cin, A., Ustaomer, T. & Hsu, K. J. Origin and assembly of the Tethyside collage at the expense of Gondwana Land. Geol. Soc. Spec. Publ. 37, 119–181 (1988).

    Article  Google Scholar 

  11. Cawood, P. A. Terra Australis Orogen: Rodinia breakup and development of the Pacific and Iapetus margins of Gondwana during the Neoproterozoic and Paleozoic. Earth Sci. Rev. 69, 249–279 (2005).

    Article  Google Scholar 

  12. Wallin, E. T., Mattinson, J. M. & Potter, A. W. Early Paleozoic magmatic events in the Eastern Klamath Mountains, Northern California. Geology 16, 144–148 (1988).

    Article  Google Scholar 

  13. Windley, B. F., Alexeiev, D., Xiao, W. J., Kroner, A. & Badarch, G. Tectonic models for accretion of the Central Asian Orogenic Belt. J. Geol. Soc. Lond. 164, 31–47 (2007).

    Article  Google Scholar 

  14. du Toit, A. L. Our Wandering Continents 366 (Oliver and Boyd, 1937).

    Google Scholar 

  15. Pollock, J. C., Wilton, D. H. C., Van Staal, C. R. & Morrissey, K. D. U–Pb detrital zircon geochronological constraints on the Early Silurian collision of Ganderia and Laurentia along the Dog Bay Line: The terminal Iapetan suture in the Newfoundland Appalachians. Am. J. Sci. 307, 399–433 (2007).

    Article  Google Scholar 

  16. Samygin, S. G. & Burtman, V. S. Tectonics of the Ural Paleozoides in comparison with the Tien Shan. Geotectonics 43, 133–151 (2008).

    Article  Google Scholar 

  17. Weislogel, A. L. et al. Detrital zircon provenance of the Late Triassic Songpan-Ganzi complex: Sedimentary record of collision of the North and South China blocks. Geology 34, 97–100 (2006).

    Article  Google Scholar 

  18. Chu, M-F. et al. Zircon U–Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of southern Tibet. Geology 34, 745–748 (2006).

    Article  Google Scholar 

  19. Leech, M. L., Singh, S., Jain, A. K. & Klemperer, S. L. The onset of India–Asia continental collision: Early, steep subduction required by the timing of UHP metamorphism in the western Himalaya. Earth Planet. Sci. Lett. 234, 83–97 (2005).

    Article  Google Scholar 

  20. Keep, M. & Haig, D. W. Deformation and exhumation in Timor: Distinct stages of a young orogeny. Tectonophysics 483, 93–111 (2010).

    Article  Google Scholar 

  21. Stampfli, G. M. & Borel, G. D. A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrones. Earth Planet. Sci. Lett. 196, 17–33 (2002).

    Article  Google Scholar 

  22. Dilek, Y. & Sandvol, E. Seismic structure, crustal architecture and tectonic evolution of the Anatolian-African plate boundary and the Cenozoic orogenic belts in the eastern Mediterranean region. Geol. Soc. Spec. Publ. 327, 127–160 (2009).

    Article  Google Scholar 

  23. Hyndman, R. D., Currie, C. A. & Mazzotti, S. P. Subduction zone backarcs, mobile belts, and orogenic heat. GSA Today 15/2, 4–10 (2005).

    Article  Google Scholar 

  24. Currie, C. A., Huismans, R. S. & Beaumont, C. Thinning of continental backarc lithosphere by flow-induced gravitational instability. Earth Planet. Sci. Lett. 269, 435–446 (2008).

    Article  Google Scholar 

  25. Clowes, R. M., Zelt, C. A., Amor, J. R. & Ellis, R. M. Lithospheric structure in the southern Canadian Cordillera from a network of seismic refraction lines. Can. J. Earth Sci. 32, 1485–1513 (1995).

    Article  Google Scholar 

  26. Kemp, A. I. S., Hawkesworth, C. J., Collins, W. J., Cray, C. M. & Blevin, P. L. Isotopic evidence for rapid continental growth in an extensional accretionary orogen: The Tasmanides, eastern Australia. Earth Planet. Sci. Lett. 284, 455–466 (2009).

    Article  Google Scholar 

  27. Bahlburg, H. et al. Timing of crust formation and recycling in accretionary orogens: Insights learned from the western margin of South America. Earth Sci. Rev. 97, 215–241 (2009).

    Article  Google Scholar 

  28. Collins, W. J. & Richards, S. W. Geodynamic significance of S-type granites in circum-Pacific orogens. Geology 36, 559–562 (2008).

    Article  Google Scholar 

  29. Miskovic, A. & Schaltagger, U. Crustal growth along a non-collisional cratonic margin: A Lu–Hf isotopic survey of the Eastern Cordilleran granitoids of Peru. Earth Planet. Sci. Lett. 279, 303–315 (2009).

    Article  Google Scholar 

  30. Stampli, G. M. & Hochard, C. Plate tectonics of the Alpine realm. Geol. Soc. Spec. Publ. 327, 89–111 (2009).

    Article  Google Scholar 

  31. Zhao, W., Nelson, K. D. & Project DEPTH Team, Deep seismicreflection evidence for continental underthrusting beneath southern Tibet. Nature 366, 557–559 (1993).

    Article  Google Scholar 

  32. Zhao, H-W. & Murphy, M. A. Tomographic evidence for wholesale underthrusting of India beneath the entire Tibetan plateau. J. Asian Earth Sci. 25, 445–457 (2005).

    Article  Google Scholar 

  33. Schmid, S. M., Pffiffner, O. A., Froitzheim, N., Schonborn, G. & Kissling, E. Geophysical-geological transect and tectonic evolution of the Swiss–Italian Alps. Tectonics 15, 1036–1064 (1996).

    Article  Google Scholar 

  34. Murphy, J. B., Oppliger, G. L., Brimhall, G. H. & Hynes, A. Plume-modified orogeny: An example from the western United States. Geology 26, 731–734 (1998).

    Article  Google Scholar 

  35. Humphreys, E. et al. How Laramide-age hydration of North American lithosphere by the Farallon slab controlled subsequent activity in the western United States. Int. Geol. Rev. 45, 575–595 (2003).

    Article  Google Scholar 

  36. Ducea, M. N. & Barton, M. D. Igniting flare-up events in Cordilleran arcs. Geology 35, 1047–1050 (2007).

    Article  Google Scholar 

  37. DeCelles, P. G., Ducea, M. N., Kapp, P. & Zandt, G. Cyclicity in Cordilleran orogenic systems. Nature Geosci. 2, 251–257 (2009).

    Article  Google Scholar 

  38. Collins, W. J. & Hobbs, B. E. What caused the Early Silurian change from mafic to silicic (S-type) magmatism in the eastern Lachlan Fold Belt? Aust. J. Earth Sci. 47, 25–41 (2002).

    Google Scholar 

  39. Scotese, C. R. Atlas of Earth History. Paleomap Progress Report 90-0497 (Univ. Texas, 2001).

  40. Bouvier, A., Vervoort, J. D. & Patchett, P. J. The Lu-Hf and Sm-Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet. Sci. Lett. 273, 48–57 (2008).

    Article  Google Scholar 

  41. Scherer, E., Münker, C. & Mezger, K. Calibration of the lutetium-hafnium clock. Science 293, 683–687 (2001).

    Article  Google Scholar 

  42. Griffin, W. L., Pearson, N. J., Belousova, E. A., Jackson, S. R., van Achterbergh, E., O’Reilly, S. Y. & Shee, S. R. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochim. Cosmochim. Acta 64, 133–147 (2000).

    Article  Google Scholar 

Download references

Acknowledgements

Supported by Australian Research Council Grant (DP0559256) and NSERC Canada. Ross Stevenson helped provide clarity. This is contribution no. 725 from the ARC National Key Centre for the Geochemical Evolution and Metallogeny of Continents (GEMOC).

Author information

Authors and Affiliations

Authors

Contributions

E.A.B. tabulated all datasets, undertook calculations and presented Fig. 2. W.J.C. wrote the paper and drew Figs 1 and 3. All authors were involved in concept development and refinement of the final presentation.

Corresponding author

Correspondence to William J. Collins.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 702 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Collins, W., Belousova, E., Kemp, A. et al. Two contrasting Phanerozoic orogenic systems revealed by hafnium isotope data. Nature Geosci 4, 333–337 (2011). https://doi.org/10.1038/ngeo1127

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo1127

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing