Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Positive feedback and momentum growth during debris-flow entrainment of wet bed sediment

Subjects

Abstract

Debris flows typically occur when intense rainfall or snowmelt triggers landslides or extensive erosion on steep, debris-mantled slopes. The flows can then grow dramatically in size and speed as they entrain material from their beds and banks, but the mechanism of this growth is unclear. Indeed, momentum conservation implies that entrainment of static material should retard the motion of the flows if friction remains unchanged. Here we use data from large-scale experiments to assess the entrainment of bed material by debris flows. We find that entrainment is accompanied by increased flow momentum and speed only if large positive pore pressures develop in wet bed sediments as the sediments are overridden by debris flows. The increased pore pressure facilitates progressive scour of the bed, reduces basal friction and instigates positive feedback that causes flow speed, mass and momentum to increase. If dryer bed sediment is entrained, however, the feedback becomes negative and flow momentum declines. We infer that analogous feedbacks could operate in other types of gravity-driven mass flow that interact with erodible beds.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Photographs of the USGS debris-flow flume during entrainment experiment A.
Figure 2: Measured positions of debris-flow fronts in experiments A–J as a function of time and bed-sediment volumetric water content, θ.
Figure 3: Post-entrainment flow conditions as a function of bed water content θ in experiments A–H.
Figure 4: Time-series data acquired at x = 32 and 66 m in two experiments (C and G) with contrasting bed-sediment water contents (θ).

Similar content being viewed by others

References

  1. Takahashi, T. Debris Flow—Mechanics, Prediction and Countermeasures (Taylor & Francis, 2007).

    Book  Google Scholar 

  2. Iverson, R. M. The physics of debris flows. Rev. Geophys. 35, 245–296 (1997).

    Article  Google Scholar 

  3. Pierce, J. L., Meyer, G. A. & Jull, A. J. T. Fire-induced erosion and millennial-scale climate change in northern ponderosa pine forests. Nature 432, 87–90 (2004).

    Article  Google Scholar 

  4. Stoffel, M. & Beniston, M. On the incidence of debris flows from the early Little Ice Age to a future greenhouse climate: A case study from the Swiss Alps. Geophys. Res. Lett. 33, L16404 (2006).

    Article  Google Scholar 

  5. Jakob, M. & Friele, P. Frequency and magnitude of debris flows on Cheekye River, British Columbia. Geomorphology 114, 382–395 (2009).

    Article  Google Scholar 

  6. Hungr, O., McDougall, S. & Bovis, M. in Debris-Flow Hazards and Related Phenomena (eds Jakob, M. & Hungr, O.) 135–158 (Springer, 2005).

    Book  Google Scholar 

  7. Benda, L. The influence of debris flows on channels and valley floors in the Oregon Coast Range, USA. Earth Surf. Proc. Landf. 15, 457–466 (1990).

    Article  Google Scholar 

  8. Pierson, T. C., Janda, R. J., Thouret, J-C. & Borrero, C. A. Perturbation and melting of snow and ice by the 13 November 1985 eruption of Nevado del Ruiz, Colombia, and consequent mobilization, flow and deposition of lahars. J. Volcanol. Geotherm. Res. 41, 17–66 (1990).

    Article  Google Scholar 

  9. Berti, M., Genevois, R., Simoni, A. & Rosella Tecca, P. Field observations of a debris flow event in the Dolomites. Geomorphology 29, 265–274 (1999).

    Article  Google Scholar 

  10. Fannin, R. J. & Wise, M. P. An empirical–statistical model for debris flow travel distance. Can. Geotech. J. 38, 982–994 (2001).

    Article  Google Scholar 

  11. Rickenmann, D., Weber, D. & Stepanov, B. in Debris-flow Hazards Mitigation: Mechanics, Prediction, and Assessment, (eds Rickenmann, D. &Chen, C-L.) 883–894 (Millpress, 2003).

    Google Scholar 

  12. Wang, G., Sassa, K. & Fukuoka, H. Downslope volume enlargement of a debris slide–debris flow in the 1999 Hiroshima, Japan, rainstorm. Eng. Geol. 69, 309–330 (2003).

    Article  Google Scholar 

  13. Godt, J. W. & Coe, J. A. Alpine debris flows triggered by a 28 July 1999 thunderstorm in the central Front Range, Colorado. Geomorphology 84, 80–97 (2007).

    Article  Google Scholar 

  14. Breien, H., De Blasio, F. V., Elverhøi, A & Høeg, K. Erosion and morphology of a debris flow caused by a glacial lake outburst flood, western Norway. Landslides 5, 271–280 (2008).

    Article  Google Scholar 

  15. Berger, C., McArdell, B. W., Fritschi, B. & Schlunegger, F. A novel method for measuring the timing of bed erosion during debris flows and floods. Water Res. 46, W02502 (2010).

    Google Scholar 

  16. Guthrie, R. H. et al. An examination of controls on debris flow mobility: Evidence from coastal British Columbia. Geomorphology 114, 601–613 (2010).

    Article  Google Scholar 

  17. Hungr, O., Morgan, G. C. & Kellerhalls, R. Quantitative analysis of debris torrent hazards for design of remedial measures. Can. Geotech. J. 21, 663–677 (1984).

    Article  Google Scholar 

  18. Pouliquen, O. & Foreterre, Y. Friction law for dense granular flows: Application to the motion of a mass down a rough inclined plane. J. Fluid Mech. 453, 133–151 (2002).

    Article  Google Scholar 

  19. Chen, H., Crosta, G. B. & Lee, C. F. Erosional effects on runout of fast landslides, debris flows and avalanches: A numerical investigation. Geotechnique 56, 305–322 (2006).

    Article  Google Scholar 

  20. Sovilla, B., Burlando, P. & Bartelt, P. Field experiments and numerical modelling of mass entrainment in snow avalanches. J. Geophys. Res. 111, F03007 (2006).

    Article  Google Scholar 

  21. Mangeney, A., Tsimring, L. S., Volfson, D., Aranson, I. S. & Bouchut, F. Avalanche mobility induced by the presence of an erodible bed and associated entrainment. Geophys. Res. Lett. 34, L22401 (2007).

    Article  Google Scholar 

  22. Armanini, A., Fraccarollo, L. & Rosatti, G. Two-dimensional simulation of debris flows in erodible channels. Comput. Geosci. 35, 993–1006 (2009).

    Article  Google Scholar 

  23. Crosta, G. B., Imposimato, S. & Roddeman, D. Numerical modelling of 2-D granular step collapse on erodible and nonerodible surface. J. Geophys. Res. 114, F03020 (2009).

    Article  Google Scholar 

  24. Mangeney, A. et al. Erosion and mobility in granular collapse over sloping beds. J. Geophys. Res. 115, F03040 (2010).

    Article  Google Scholar 

  25. Bowman, E. T., Imre, B., Laue, J. & Springman, S. M. in Debris-flow Hazards Mitigation: Mechanics, Prediction, and Assessment, (eds Chen, C-L. & Major, J. J.) 229–239 (Millpress, 2007).

    Google Scholar 

  26. Iverson, R. M., Logan, M., LaHusen, R. G. & Berti, M. The perfect debris flow? Aggregated results from 28 large-scale experiments. J. Geophys. Res. 115, F03005 (2010).

    Article  Google Scholar 

  27. Hutchinson, J. N. & Bhandari, R. K. Undrained loading, a fundamental mechanism of mudflows and other mass movements. Geotechnique 21, 353–358 (1971).

    Article  Google Scholar 

  28. Sassa, K., Kaibori, M. & Kitera, N. in Proc. Int. Symp. on Erosion, Debris Flows and Disaster Prevention (ed. Takei, A.) 231–236 (The Erosion-control Engineering Society, 1985).

    Google Scholar 

  29. Takahashi, T. Mechanical characteristics of debris flow. J. Hydraul. Division, ASCE 104, 1153–1169 (1978).

    Google Scholar 

  30. Hungr, O. Momentum transfer and friction in the debris of rock avalanches: Discussion. Can. Geotech. J. 27, 697 (1990).

    Article  Google Scholar 

  31. Van Gassen, W. & Cruden, D. M. Momentum transfer and friction in the debris of rock avalanches: Reply. Can. Geotech. J. 27, 698–699 (1990).

    Article  Google Scholar 

  32. Erlichson, H. A mass-change model for the estimation of debris-flow runout, a second discussion: Conditions for the application of the rocket equation. J. Geol. 99, 633–634 (1991).

    Article  Google Scholar 

  33. Iverson, R. M. & Denlinger, R. P. Flow of variably fluidized granular masses across three-dimensional terrain: 1. Coulomb mixture theory. J. Geophys. Res. 106, 537–552 (2001).

    Article  Google Scholar 

  34. Iverson, R. M. & Vallance, J. W. New views of granular mass flows. Geology 29, 115–118 (2001).

    Article  Google Scholar 

  35. Logan, M. & Iverson, R. M. Video Documentation of Experiments at the USGS Debris-flow Flume, 1992–2009. US Geological Survey Open-file Report 2007-1315, version 2.0 (2007) http://pubs.usgs.gov/of/2007/1315/.

  36. Hungr, O. Analysis of debris flow surges using the theory of uniformly progressive flow. Earth Surf. Process Landf. 25, 483–495 (2000).

    Article  Google Scholar 

  37. McArdell, B. W., Bartelt, P. & Kowaslski, J. Field observations of basal forces and fluid pore pressure in a debris flow. Geophys. Res. Lett. 34, L07406 (2007).

    Article  Google Scholar 

  38. McCoy, S. W. et al. Evolution of a natural debris flow: In situ measurements of flow dynamics, video imagery, and terrestrial laser scanning. Geology 38, 735–738 (2010).

    Article  Google Scholar 

  39. Sharp, R. P. & Nobles, L. H. Mudflow of 1941 at Wrightwood, southern California. Geol. Soc. Am. Bull. 64, 547–560 (1953).

    Article  Google Scholar 

  40. Pierson, T. C. in Hillslope Processes (ed. Abrahams, A. D.) 269–296 (Allen & Unwin, 1986).

    Google Scholar 

  41. Iverson, R. M., Reid, M. E. & LaHusen, R. G. Debris-flow mobilization from landslides. Annu. Rev. Earth Planet. Sci. 25, 85–138 (1997).

    Article  Google Scholar 

  42. Iverson, R. M. et al. Acute sensitivity of landslide rates to initial soil porosity. Science 290, 513–516 (2000).

    Article  Google Scholar 

  43. Iverson, R. M. Regulation of landslide motion by dilatancy and pore-pressure feedback. J. Geophys. Res. 110, F02015 (2005).

    Article  Google Scholar 

  44. Roche, O., Montserrat, S., Niño, Y. & Tamburrino, A. Pore fluid pressure and internal kinematics of gravitational laboratory air-particle flows: Insights into the emplacement dynamics of pyroclastic flows. J. Geophys. Res. 115, B09206 (2010).

    Article  Google Scholar 

  45. Kizito, F. et al. Frequency, electrical conductivity and temperature analysis of a low-cost capacitance soil moisture sensor. J. Hydrol. 352, 367–378 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

We thank K. Swinford, R. Denlinger, S. Henderson, D. George, C. Fox-Lent, J. Coe, W. Schulz, B. McArdell and C. Berger for assisting with experiments, and we thank A. Mangeney, J. Kean and J. Walder for providing useful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

R.M.I., M.E.R., M.L., R.G.L. and J.W.G. designed and implemented various facets of the experiments and measurement protocols, and R.M.I., M.E.R., M.L., R.G.L. and J.P.G. collected, processed and analysed the data. R.M.I. wrote the paper, but all authors concurred with the paper’s content.

Corresponding author

Correspondence to Richard M. Iverson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 535 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iverson, R., Reid, M., Logan, M. et al. Positive feedback and momentum growth during debris-flow entrainment of wet bed sediment. Nature Geosci 4, 116–121 (2011). https://doi.org/10.1038/ngeo1040

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo1040

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing