Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Influence of African dust on ocean–atmosphere variability in the tropical Atlantic

Abstract

The dominant source of coupled ocean–atmosphere variability in the tropical Atlantic is the so-called Atlantic Meridional Mode1,2,3. This mode of variability is characterized by an interhemispheric gradient in sea surface temperatures and by oscillations in the strength of surface winds that cross the Equator, thereby reinforcing sea surface temperature anomalies1,2,3,4. The Atlantic Meridional Mode is thermodynamically damped and must receive external forcing to persist as observed3. However, it is not known which external forcing factors have excited the Atlantic Meridional Mode in the historical record. Here we present simulations with an ocean general circulation model that is forced by a record of surface radiation from anomalous dust concentrations in the atmosphere, reconstructed from a coral proxy and satellite retrievals. We show that the Atlantic Meridional Mode is excited by variability in African dust outbreaks on interannual to decadal timescales. Our analysis indicates that sea surface temperature anomalies resulting from the aerosol direct effect persist in time through the positive ocean–atmosphere feedback5 that defines the Atlantic Meridional Mode. We conclude that on interannual to decadal timescales, the state of the tropical Atlantic ocean is directly tied to dust emissions over West Africa, which in turn are linked to land-use change6,7,8.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Historical DAOD and the structure of the AMM and the SST response to dust variability.
Figure 2: Monthly mean output from idealized coupled model experiments.
Figure 3: Observed and dust-forced component of the AMM time series.

Similar content being viewed by others

References

  1. Chang, P., Ji, L. & Li, H. A decadal climate variation in the tropical Atlantic Ocean from thermodynamic air–sea interactions. Nature 385, 516–518 (1997).

    Article  Google Scholar 

  2. Chiang, J. C. H. & Vimont, D. J. Analogous Pacific and Atlantic Meridional Modes of tropical atmosphere–ocean variability. J. Clim. 17, 4143–4158 (2004).

    Article  Google Scholar 

  3. Vimont, D. J. Transient growth of thermodynamically coupled variations in the tropics under an equatorially symmetric mean state. J. Clim. 23, 5771–5789 (2010).

    Article  Google Scholar 

  4. Xie, S-P. & Carton, J. A. in Earth’s Climate: The Ocean–Atmosphere Interaction (eds Wang, C., Xie, S-P. & Carton, J. A.) 121–142 (Geophys. Monogr. Ser., Vol. 147, AGU, 2004).

    Google Scholar 

  5. Xie, S-P. & Philander, S. G. H. A coupled ocean–atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus 46, 340–350 (1994).

    Article  Google Scholar 

  6. Mahowald, N. M. Anthropocene changes in desert area: Sensitivity to climate model predictions. Geophys. Res. Lett. 34, L18817 (2007).

    Article  Google Scholar 

  7. Mahowald, N. M. et al. Observed 20th century desert dust variability: Impact on climate and biogeochemistry. Atmos. Chem. Phys. Discuss. 10, 12585–12628 (2010).

    Article  Google Scholar 

  8. Mulitza, S. et al. Increase in African dust flux at the onset of commercial agriculture in the Sahel region. Nature 466, 226–228 (2010).

    Article  Google Scholar 

  9. Goudie, A. S. & Middleton, N. J. Desert Dust in the Global System (Springer, 2006).

    Google Scholar 

  10. Kaufman, Y. J. et al. Dust transport and deposition observed from the Terra-Moderate Resolution Imaging Spectroradiometer (MODIS) spacecraft over the Atlantic Ocean. J. Geophys. Res. 110, D10S12 (2005).

    Article  Google Scholar 

  11. Evan, A. T. & Mukhopadhyay, S. African dust over the northern tropical Atlantic: 1955–2008. J. Appl. Meteorol. Climatol. 49, 2213–2229 (2010).

    Article  Google Scholar 

  12. Evan, A. T., Vimont, D. J., Heidinger, A. K., Kossin, J. P. & Bennartz, R. The role of aerosols in the evolution of tropical North Atlantic Ocean temperature anomalies. Science 324, 778–781 (2009).

    Article  Google Scholar 

  13. Foltz, G. R. & McPhaden, M. J. Impact of Saharan dust on tropical North Atlantic SST. J. Clim. 21, 5048–5060 (2008).

    Article  Google Scholar 

  14. Foltz, G. R. & McPhaden, M. J. Trends in Saharan dust and tropical Atlantic climate during 1980–2006. Geophys. Res. Lett. 35, L20706 (2008).

    Article  Google Scholar 

  15. Prospero, J. M. & Lamb, P. J. African droughts and dust transport to the Caribbean: Climate change implications. Science 302, 1024–1027 (2003).

    Article  Google Scholar 

  16. Marshall, J., Adcroft, A., Hill, C., Perelman, L. & Heisey, C. A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res. 102, 5753–5766 (1997).

    Article  Google Scholar 

  17. Marshall, J., Hill, C., Perelman, L. & Adcroft, A. Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling. J. Geophys. Res. 102, 5733–5752 (1997).

    Article  Google Scholar 

  18. Kalnay, E. et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 77, 437–471 (1996).

    Article  Google Scholar 

  19. Chang, P., Ji, L. & Saravanan, R. A hybrid coupled model study of tropical Atlantic variability. J. Clim. 14, 361–390 (2001).

    Article  Google Scholar 

  20. Battisti, D. S., Sarachik, E. S. & Hirst, A. C. A consistent model for the large-scale steady atmospheric circulation in the tropics. J. Clim. 12, 2956–2964 (1999).

    Article  Google Scholar 

  21. Rayner, N. A. et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. 108, 4407 (2003).

    Article  Google Scholar 

  22. Czaja, A., van der Vaart, P. & Marshall, J. A diagnostic study of the role of remote forcing in tropical Atlantic variability. J. Clim. 15, 3280–3290 (2002).

    Article  Google Scholar 

  23. Vimont, D. J. & Kossin, J. P. The Atlantic meridional mode and hurricane activity. Geophys. Res. Lett. 34, L07709 (2007).

    Article  Google Scholar 

  24. Moulin, C., Lambert, C., Dulac, F. & Dayan, U. Control of atmospheric export of dust from North Africa by the North Atlantic oscillation. Nature 387, 691–694 (1997).

    Article  Google Scholar 

  25. Evan, A. T., Heidinger, A. K. & Knippertz, P. Analysis of winter dust activity off the coast of West Africa using a new 24-year over-water advanced very high resolution radiometer satellite dust climatology. J. Geophys. Res. 111, D12210 (2006).

    Article  Google Scholar 

  26. Foltz, G. R. & McPhaden, M. J. 2006: The role of oceanic heat advection in the evolution of tropical North and South Atlantic SST anomalies. J. Clim. 19, 6122–6138 (2006).

    Article  Google Scholar 

  27. Kossin, J. P. & Vimont, D. J. A more general framework for understanding Atlantic hurricane variability and trends. Bull. Am. Meteorol. Soc. 88, 1767–1781 (2007).

    Article  Google Scholar 

  28. Evan, A. T., Dunion, J., Foley, J. A., Heidinger, A. K. & Velden, C. S. New evidence for a relationship between Atlantic tropical cyclone activity and African dust outbreaks. Geophys. Res. Lett. 33, L19813 (2006).

    Article  Google Scholar 

  29. Evan, A. T. et al. Ocean temperature forcing by aerosols across the Atlantic tropical cyclone development region. Geochem. Geophys. Geosyst. 9, Q05V04 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

Financial support for this work was provided by NOAA/CLIVAR grants NA10OAR4310136 and NA10OAR4310207.

Author information

Authors and Affiliations

Authors

Contributions

A.T.E. and D.J.V. designed and carried out the model experiments; A.T.E., G.R.F., D.J.V. and D.Z. analysed and interpreted the model output and co-wrote the paper.

Corresponding author

Correspondence to Amato T. Evan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1070 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evan, A., Foltz, G., Zhang, D. et al. Influence of African dust on ocean–atmosphere variability in the tropical Atlantic. Nature Geosci 4, 762–765 (2011). https://doi.org/10.1038/ngeo1276

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo1276

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene