Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Towards inferring earthquake patterns from geodetic observations of interseismic coupling

Abstract

Ultimately, seismotectonic studies seek to provide ways of assessing the timing, magnitude and spatial extent of future earthquakes. Ample observations document the spatial variability in interseismic coupling, defined as a degree of locking of a fault during the period of stress build-up between seismic events: fully or nearly locked fault patches are often surrounded by aseismically creeping areas. However, it is unclear how these observations could help assess future earthquakes. Here we simulate spontaneous seismic and aseismic fault slip with a fully dynamic numerical model. Our simulations establish the dependence of earthquake rupture patterns and interseismic coupling on spatial variations of fault friction. We consider the long-term evolution of slip on a model fault where two seismogenic, locked segments are separated by an aseismically slipping patch where rupture is impeded. We find that the probability for a large earthquake to break through the rupture-impeding patch is correlated with the interseismic coupling averaged over this patch. In addition, the probability that an earthquake breaks through the rupture-impeding patch and interseismic coupling are both related to fault friction properties through a single non-dimensional parameter. Our study opens the possibility of predicting seismic rupture patterns that a fault system can produce on the basis of observations of its interseismic coupling, and suggests that regions of low interseismic coupling may reveal permanent barriers to large earthquakes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic illustrations of ISC as commonly observed on subduction megathrust faults and distribution of friction properties in our 2D and 3D models.
Figure 2: An example of long-term fault behaviour computed in the 2D model.
Figure 3: Characteristics of simulated earthquakes and causes of rupture arrest.
Figure 4: Relation between the properties of VS and VW regions, probability P that an earthquake would propagate through the VS patch, and ISC.

Similar content being viewed by others

References

  1. Shimazaki, K. & Nakata, T. Time-predictable recurrence model for large earthquakes. Geophys. Res. Lett. 7, 279–282 (1980).

    Article  Google Scholar 

  2. Schwartz, D. P. & Coppersmith, K. J. Fault behaviour and characteristic earthquakes: Examples from the Wasatch and San Andreas fault zones. J. Geophys. Res. 89, 5681–5698 (1984).

    Article  Google Scholar 

  3. Schwartz, S. Y. Noncharacteristic behavior and complex recurrence of large subduction zone earthquakes. J. Geophys. Res. 104, 23111–23125 (1999).

    Article  Google Scholar 

  4. Murray, J. & Segall, P. Testing time-predictable earthquake recurrence by direct measurement of strain accumulation and release. Nature 419, 287–291 (2002).

    Article  Google Scholar 

  5. Weldon, R., Fumal, T. & Biasi, G. Wrightwood and the earthquake cycle: What a long recurrence record tells us about how faults works. GSA Today 14, 4–10 (2004).

    Article  Google Scholar 

  6. Konca, O. A. et al. Partial rupture of a locked patch of the Sumatra megathrust during the 2007 earthquake sequence. Nature 456, 631–635 (2008).

    Article  Google Scholar 

  7. Thatcher, W. Order and diversity in the modes of Circum-Pacific earthquake recurrence. J. Geophys. Res. 91, 2609–2623 (1990).

    Article  Google Scholar 

  8. Sieh, K. et al. Earthquake supercycles inferred from sea-level changes recorded in the corals of west Sumatra. Science 322, 1674–1678 (2008).

    Article  Google Scholar 

  9. Kanamori, H. & McNally, K. C. Variable rupture mode of the subduction zone along the Ecuador–Colombia coast. Bull. Seismol. Soc. Am. 72, 1241–1253 (1982).

    Google Scholar 

  10. Rundle, J. B., Kanamori, H. & McNally, K. C. An inhomogeneous fault model for gaps, asperities, barriers and seismicity migration. J. Geophys. Res. 89, 10219–10231 (1987).

    Article  Google Scholar 

  11. Cochard, A. & Madariaga, R. Complexity of seismicity due to highly rate-dependent friction. J. Geophys. Res. 101, 25321–25336 (1996).

    Article  Google Scholar 

  12. Ariyoshi, K. et al. Character of slip and stress due to interaction between fault segments along the dip direction of a subduction zone. J. Geodyn. 48, 55–67 (2009).

    Article  Google Scholar 

  13. Wesnousky, S. G. Predicting the endpoints of earthquake ruptures. Nature 444, 358–360 (2006).

    Article  Google Scholar 

  14. Freymueller, J. T., Cohen, S. C. & Fletcher, H. J. Spatial variations in present-day deformation, Kenai Peninsula, Alaska, and their implications. J. Geophys. Res. 105, 8079–8101 (2000).

    Article  Google Scholar 

  15. Igarashi, T., Matsuzawa, T. & Hasegawa, A. Repeating earthquakes and interplate aseismic slip in the northeastern Japan subduction zone. J. Geophys. Res. 108, 2249 (2003).

    Article  Google Scholar 

  16. Chlieh, M., Avouac, J-P., Sieh, K., Natawidjaja, D. H. & Galetzka, J. Heterogeneous coupling of the Sumatran megathrust constrained by geodetic and paleogeodetic measurements. J. Geophys. Res. 113, B05305 (2008).

    Article  Google Scholar 

  17. Moreno, M. S., Klotz, J., Melnick, D., Echtler, H. & Bataille, K. Active faulting and heterogeneous deformation across a megathrust segment boundary from GPS data, south central Chile (36–39 S). Geochem. Geophys. Geosyst. 9, Q12024 (2008).

    Google Scholar 

  18. Hashimoto, C., Noda, A., Sagiya, T. & Matsu’ura, M. Interplate seismogenic zones along the Kuril–Japan trench inferred from GPS data inversion. Nature Geosci. 2, 141–144 (2009).

    Article  Google Scholar 

  19. Perfettini, H. et al. Aseismic and seismic slip on the megathrust offshore southern Peru revealed by geodetic strain. Nature (in the press).

  20. Yamanaka, Y. & Kikuchi, M. Asperity map along the subduction zone in northeastern Japan inferred from regional seismic data. J. Geophys. Res. 109, B07307 (2004).

    Article  Google Scholar 

  21. Ito, T., Yoshioka, S. & Miyazaki, S. Interplate coupling in northeast Japan deduced from inversion analysis of GPS data. Earth Planet. Sci. Lett. 176, 117–130 (2000).

    Article  Google Scholar 

  22. Hsu, Y-J. et al. Frictional afterslip following the 2005 Nias–Simeulue earthquake, Sumatra. Science 312, 1921–1926 (2006).

    Article  Google Scholar 

  23. Miyazaki, S., Segall, P., Fukuda, J. & Kato, T. Space time distribution of afterslip following the 2003 Tokachi-oki earthquake: Implications for variations in fault zone frictional properties. Geophys. Res. Lett. 31, L06623 (2004).

    Google Scholar 

  24. Baba, T., Hirata, K., Hori, T. & Sakaguchi, H. Offshore geodetic data conducive to the estimation of the afterslip distribution following the 2003 Tokachi-oki earthquake. Earth Planet. Sci. Lett. 241, 281–292 (2006).

    Article  Google Scholar 

  25. Johanson, I. A., Fielding, E. J., Rolandone, F. & Bürgmann, R. Coseismic and postseismic slip of the 2004 Parkfield earthquake from space-geodetic data. Bull. Seismol. Soc. Am. 96, 269–282 (2006).

    Google Scholar 

  26. Rubin, A. M., Gillard, D. & Got, J-L. Streaks of microearthquakes along creeping faults. Nature 400, 635–641 (1999).

    Article  Google Scholar 

  27. Bourouis, S. & Bernard, P. Evidence for coupled seismic and aseismic fault slip during water injection in the geothermal site of Soultz (France), and implications for seismogenic transients. Geophys. J. Int. 169, 723–732 (2007).

    Google Scholar 

  28. Dieterich, J. H. Time-dependent friction and the mechanics of stick–slip. J. Geophys. Res. 116, 790–806 (1978).

    Google Scholar 

  29. Ruina, A. L. Slip instability and state variable friction laws. J. Geophys. Res. 88, 10359–10370 (1983).

    Article  Google Scholar 

  30. Blanpied, M. L., Lockner, D. A. & Byerlee, J. D. Frictional slip of granite at hydrothermal conditions. J. Geophys. Res. 100, 13045–13064 (1995).

    Article  Google Scholar 

  31. Marone, C. Laboratory-derived friction laws and their application to seismic faulting. Annu. Rev. Earth Planet. Sci. 26, 643–696 (1998).

    Article  Google Scholar 

  32. Dieterich, J. H. Applications of rate- and state-dependent friction to models of fault slip and earthquake occurrence. Treat. Geophys. 4, 107–129 (2007).

    Article  Google Scholar 

  33. Tse, S. & Rice, J. R. Crustal earthquake instability in relation to the depth variation of frictional slip properties. J. Geophys. Res. 91, 9452–9472 (1986).

    Article  Google Scholar 

  34. Rice, J. R. & Ruina, A. L. Stability of steady frictional slipping. J. Appl. Mech. 50, 343–349 (1983).

    Article  Google Scholar 

  35. Ben-Zion, Y. & Rice, J. R. Slip patterns and earthquake populations along different classes of faults in elastic solids. J. Geophys. Res. 100, 12959–12983 (1995).

    Article  Google Scholar 

  36. Tullis, T. E. Rock friction and its implications for earthquake prediction examined via models of Parkfield earthquakes. Proc. Natl Acad. Sci. USA. 93, 3803–3810 (1996).

    Article  Google Scholar 

  37. Lapusta, N., Rice, J., Ben-Zion, Y. & Zheng, G. Elastodynamic analysis for slow tectonic loading with spontaneous rupture episodes on faults with rate- and state-dependent friction. J. Geophys. Res. 105, 23765–23789 (2000).

    Article  Google Scholar 

  38. Hori, T., Kato, N., Hirahara, K., Baba, T. & Kaneda, Y. A numerical simulation of earthquake cycles along the Nankai trough, southwest Japan: Lateral variation in frictional property due to slab geometry controls the nucleation position. Earth Planet. Sci. Lett. 228, 215–226 (2004).

    Article  Google Scholar 

  39. Rice, J. R. Spatio-temporal complexity of slip on a fault. J. Geophys. Res. 98, 9885–9907 (1993).

    Article  Google Scholar 

  40. Boatwright, J. & Cocco, M. Frictional constraints on crustal faulting. J. Geophys. Res. 101, 13895–13909 (1996).

    Article  Google Scholar 

  41. Chen, T. & Lapusta, N. Scaling of small repeating earthquakes explained by interaction of seismic and aseismic slip in a rate and state fault model. J. Geophys. Res. 114, B01311 (2009).

    Google Scholar 

  42. Suito, H. & Freymueller, J. T. A viscoelastic and afterslip postseismic deformation model for the 1964 Alaska earthquake. J. Geophys. Res. 114, B11404 (2009).

    Article  Google Scholar 

  43. Christensen, D. H. & Beck, S. L. The rupture process and tectonic implications of the great 1964 Prince William sound earthquake. Pure Appl. Geophys. 142, 29–53 (1994).

    Article  Google Scholar 

  44. Sladen, A. et al. Source model of the 2007 Mw 8.0 Pisco, Peru earthquake—implications for seismogenic behavior of subduction megathrusts. J. Geophys. Res. 115, B02405 (2010).

    Article  Google Scholar 

  45. Lapusta, N. & Liu, Y. Three-dimensional boundary integral modeling of spontaneous earthquake sequences and aseismic slip. J. Geophys. Res. 114, B09303 (2009).

    Article  Google Scholar 

  46. Tinti, E., Spudich, P. & Cocco, M. Earthquake fracture energy inferred from kinematic rupture models on extended faults. J. Geophys. Res. 110, B12303 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Science Foundation (grant EAR 0548277) and Caltech Tectonics Observatory. This is Caltech Tectonics Observatory contribution no 130. Numerical simulations for this study were carried out on the CITerra Dell cluster at the Division of Geological and Planetary Sciences of the California Institute of Technology.

Author information

Authors and Affiliations

Authors

Contributions

Y.K. designed the study, carried out and analysed the numerical experiments and wrote the paper. J-P.A. and N.L. analysed the numerical experiments and contributed to the concept development. All authors discussed the results and commented on the paper.

Corresponding author

Correspondence to Yoshihiro Kaneko.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 496 kb)

Supplementary Information

Supplementary Movie (MOV 1662 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaneko, Y., Avouac, JP. & Lapusta, N. Towards inferring earthquake patterns from geodetic observations of interseismic coupling. Nature Geosci 3, 363–369 (2010). https://doi.org/10.1038/ngeo843

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo843

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing