Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tropical dehydration processes constrained by the seasonality of stratospheric deuterated water

Abstract

Stratospheric water vapour affects Earth’s radiation budget. In addition, it has a key role in stratospheric chemistry and in processes that permit ozone depletion. Air largely enters the stratosphere in the tropics, but the processes that bring water through the cold tropopause into the stratosphere are not well understood. Here we present a 19-month record of non-deuterated (H2O) and deuterated (HDO) water in the tropical stratosphere, collected through remote-sensing measurements with the Michelson Interferometer for Passive Atmospheric Sounding. Our data show a clear seasonal cycle in the isotopic composition that propagates upward in the tropical stratosphere, and is most likely created in the tropical tropopause layer. In addition, we find that the slope of the HDO–H2O correlation of water entering the stratosphere in the tropics is close to, but slightly steeper than the slope expected from Rayleigh fractionation. We propose that gradual dehydration of air by cirrus clouds that are formed in situ, together with a seasonally varying contribution from the evaporation of convectively lofted ice, provides the most plausible explanation for our measurements. We conclude that potential changes in the water budget of the tropical tropopause layer and the stratosphere should be detectable in isotopic measurements.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic depicting sources of tropical stratospheric water vapour.
Figure 2: The water and HDO tape recorder.
Figure 3: MIPAS measurements of [HDO] and [H2O] in the tropical stratosphere (15 S–15 N).

Similar content being viewed by others

References

  1. Brewer, A. W. Evidence for a world circulation provided by the measurements of helium and water vapour distribution in the stratosphere. Q. J. R. Meteorol. Soc. 75, 351–363 (1949).

    Article  Google Scholar 

  2. Fueglistaler, S. et al. Tropical tropopause layer. Rev. Geophys. 47, RG1004 (2009).

    Article  Google Scholar 

  3. Forster, P. et al. in IPCC Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) (Cambridge Univ. Press, 2007).

    Google Scholar 

  4. World Meteorological Organization Scientific Assessment of Ozone Depletion: 2006 Global Ozone Research and Monitoring Project Report 50 (WMO, 2007).

  5. Worden. J., Noone. D., Bowman. K. & The Tropospheric Emission Spectrometer science team and data contributors. Importance of rain evaporation and continental convection in the tropical water cycle. Nature 445, 528–532 (2007).

    Article  Google Scholar 

  6. Frankenberg, C. et al. Dynamic processes governing lower-tropospheric HDO/H2O ratios as observed from space and ground. Science 325, 1374–1377 (2009).

    Article  Google Scholar 

  7. Dansgaard, W. Stable isotopes in precipitation. Tellus 16, 436–486 (1964).

    Article  Google Scholar 

  8. Kuang, Z. M., Toon, G. C., Wennberg, P. O. & Yung, Y. L. Measured HDO/H2O ratios across the tropical tropopause. Geophys. Res. Lett. 30, 1372 (2003).

    Article  Google Scholar 

  9. Smith, J. A., Ackerman, A. S., Jensen, E. J. & Toon, O. B. Role of deep convection in establishing the isotopic composition of water vapor in the tropical transition layer. Geophys. Res. Lett. 33, L06812 (2006).

    Google Scholar 

  10. Dessler, A. E. & Sherwood, S. C. A model of HDO in the tropical tropopause layer. Atmos. Chem. Phys. 3, 2173–2181 (2003).

    Article  Google Scholar 

  11. Keith, D. W. Stratosphere–troposphere exchange: Inferences from the isotopic composition of water vapor. J. Geophys. Res. 105, 15167–15173 (2000).

    Article  Google Scholar 

  12. Johnson, D. G., Jucks, K. W., Traub, W. A. & Chance, K. V. Isotopic composition of stratospheric water vapor: Implications for transport. J. Geophys. Res. 106, 12219–12226 (2001).

    Article  Google Scholar 

  13. Webster, C. R. & Heymsfield, A. J. Water isotope ratios D/H, 18O/16O, 17O/16O in and out of clouds map dehydration pathways. Science 302, 1742–1745 (2003).

    Article  Google Scholar 

  14. Moyer, E. J., Irion, F. W., Yung, Y. L. & Gunson, M. P. ATMOS stratospheric deuterated water and implications for troposphere–stratosphere transport. Geophys. Res. Lett. 23, 2385–2388 (1996).

    Article  Google Scholar 

  15. Hanisco, T. F. et al. Observations of deep convective influence on stratospheric water vapor and its isotopic composition. Geophys. Res. Lett. 34, L04814 (2007).

    Article  Google Scholar 

  16. Wright, J. S., Sobel, A. H. & Schmidt, G. A. Influence of condensate evaporation on water vapor and its stable isotopes in a GCM. Geophys. Res. Lett. 36, D05115 (2009).

    Article  Google Scholar 

  17. Schmidt, G. A., Hoffmann, G., Shindell, D. T. & Hu, Y. Y. Modeling atmospheric stable water isotopes and the potential for constraining cloud processes and stratosphere–troposphere water exchange. J. Geophys. Res. 110, D21314 (2005).

    Article  Google Scholar 

  18. Volk, C. M. et al. Quantifying transport between the tropical and mid-latitude lower stratosphere. Science 272, 1763–1768 (1996).

    Article  Google Scholar 

  19. Steinwagner, J. et al. HDO measurements with MIPAS. Atmos. Chem. Phys. 7, 2601–2615 (2007).

    Article  Google Scholar 

  20. Fischer, H. et al. MIPAS: An instrument for atmospheric and climate research. Atmos. Chem. Phys. 8, 2151–2188 (2008).

    Article  Google Scholar 

  21. Mote, P. W. et al. An atmospheric tape recorder: The imprint of tropical tropopause temperatures on stratospheric water vapor. J. Geophys. Res. 101, 3989–4006 (1996).

    Article  Google Scholar 

  22. Rice, A. L. et al. Carbon and hydrogen isotopic compositions of stratospheric methane: 1. High-precision observations from the NASA ER-2 aircraft. J. Geophys. Res. 108, 4460 (2003).

    Article  Google Scholar 

  23. Notholt, J. et al. Trend in ice moistening the stratosphere–constraints from isotope data of water and methane. Atmos. Chem. Phys. 10, 201–207 (2010).

    Article  Google Scholar 

  24. Plumb, R.A. A ‘tropical pipe’ model of stratospheric transport. J. Geophys. Res. 101, 3957–3972 (1996).

    Article  Google Scholar 

  25. McCarthy, M. C. et al. The hydrogen isotopic composition of water vapor entering the stratosphere inferred from high-precision measurements of δD-CH4 and δD-H2 . J. Geophys. Res. 109, D07304 (2004).

    Article  Google Scholar 

  26. Brown, D., Worden, J. & Noone, D. Comparison of atmospheric hydrology over convective continental regions using water vapor isotope measurements from space. J. Geophys. Res. 113, D05115 (2008).

    Article  Google Scholar 

  27. Schneider, M., Hase, F. & Blumenstock, T. Ground-based remote sensing of HDO/H2O ratio profiles: Introduction and validation of an innovative retrieval approach. Atmos. Chem. Phys. 6, 4705–4722 (2006).

    Article  Google Scholar 

  28. Peter, T., Kraemer, M. & Moehler, O. Upper tropospheric humidity: A report on an international workshop. SPARC Newsletter 9–15 (2008).

  29. Jouzel, J. & Merlivat, L. Deuterium and oxygen 18 in precipitation: Modeling of the isotopic effects during snow formation. J. Geophys. Res. 89, 11749–11757 (1984).

    Article  Google Scholar 

  30. Fueglistaler, S., Bonazzola, M., Haynes, P. H. & Peter, T. Stratospheric water vapor predicted from the Lagrangian temperature history of air entering the stratosphere in the tropics. J. Geophys. Res. 110, D08107 (2005).

    Google Scholar 

  31. Rodgers, C. D. Inverse Methods for Atmospheric Sounding, Theory and Practice (World Scientific, 2000).

    Book  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Dutch Science foundation NWO (grant number ALW-GO-AO/07-01).

Author information

Authors and Affiliations

Authors

Contributions

Project planning: T.R., J.S., retrieval: J.S., G.S., T.v.C., M.K., data analysis: J.S., S.F., P.-P.B., interpretation: T.R., S.F., J.S., G.S., T.v.C., A.v.D., manuscript: T.R., S.F., J.S.

Corresponding authors

Correspondence to Stephan Fueglistaler or Thomas Röckmann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 443 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steinwagner, J., Fueglistaler, S., Stiller, G. et al. Tropical dehydration processes constrained by the seasonality of stratospheric deuterated water. Nature Geosci 3, 262–266 (2010). https://doi.org/10.1038/ngeo822

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo822

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing