Letter abstract

Nature Geoscience 2, 484 - 487 (2009)
Published online: 28 June 2009 | doi:10.1038/ngeo555

Subject Categories: Climate science | Ecology

Committed terrestrial ecosystem changes due to climate change

Chris Jones1, Jason Lowe1, Spencer Liddicoat1 & Richard Betts1


Targets for stabilizing climate change are often based on considerations of the impacts of different levels of global warming, usually assessing the time of reaching a particular level of warming. However, some aspects of the Earth system, such as global mean temperatures1 and sea level rise due to thermal expansion2 or the melting of large ice sheets3, continue to respond long after the stabilization of radiative forcing. Here we use a coupled climate–vegetation model to show that in turn the terrestrial biosphere shows significant inertia in its response to climate change. We demonstrate that the global terrestrial biosphere can continue to change for decades after climate stabilization. We suggest that ecosystems can be committed to long-term change long before any response is observable: for example, we find that the risk of significant loss of forest cover in Amazonia rises rapidly for a global mean temperature rise above 2 °C. We conclude that such committed ecosystem changes must be considered in the definition of dangerous climate change, and subsequent policy development to avoid it.

  1. Met Office Hadley Centre, Exeter EX1 3PB, UK

Correspondence to: Chris Jones1 e-mail: chris.d.jones@metoffice.gov.uk


These links to content published by NPG are automatically generated.


Northward march of spruce

Nature News and Views (21 Jan 1993)

C-quest in the Amazon Basin

Nature News and Views (17 Dec 1998)

See all 5 matches for News And Views